Lecture One

Topolgy *

1 Logic and Set Theory

Definition 1. A set is a collection of definite and distinguishable objects, these objects are called elements.

Example 1. $A = \{a, e, i, o, 4\}$ is a set of 5 elements and $a \in A$.

Example 2. $B = \{x : x \text{ is an integer and } x > 0\}$ is a set which is written in builder notation. Note that $\pi \notin B$ while $6 \in B$.

1.1 Subsets

A set A is a subset of B written as $A \subseteq B$ if and only if $x \in A \Rightarrow x \in B$ and is read as A is subset of B or A is contained in B or B contains A.

1.2 Equality of Sets

Definition 2. Any two sets A and B are said to be equal if and only if $A \subseteq B$ and $B \subseteq A$.

1.3 Set Operations

Let A and B be two sets. Then the following operations are defined.

- $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
- $A \cap B = \{x : x \in A \text{ and } x \in B\}.$
- $A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$
- $A^c = \{x : x \in U \text{ and } x \notin A\}$, where U is the universal set.

Note that

- $\phi^c = U$.
- $U^c = \phi$.

 $^{^{*}\}mathrm{Dr.}$ Rola Alseidi, Assistant Professor, Philadelphia University, Department of Basic Science and Mathematics.

- $\bullet \ A\cup A^c=U.$
- $\bullet \ A\cap A^c=\phi.$

1.4 Disjoint Sets

Two sets A and B are called disjoint if $A \cap B = \phi$.

1.5 Laws of the Algebra of Sets

Let A, B, and C be sets with U as the universal set. Then

- $A \cup A = A$.
- $A \cap A = A$.
- $A \cap (B \cap C) = (A \cap B) \cap C.$
- $A \cup (B \cup C) = (A \cup B) \cup C.$
- $A \cup B = B \cup A$.
- $A \cap B = B \cap A$.
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- $A \cup U = U$.
- $A \cap U = A$.
- $A \cap \phi = \phi$.
- $A \cup \phi = A$.
- $(A^c)^c = A$.

1.6 Product of the Sets

The product set of A and B, written as $A \times B$ consists of all the ordered pairs (a, b) where $a \in A$ and $b \in B$, i.e.,

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

Example 3. Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Then

$$A \times B = \{(1, a)(1, b), (2, a)(2, b)(3, a)(3, b)\}.$$

Remark 1. The concept of product of sets can be extended to any finite number of sets in a natural way. The product of the sets A_1, \ldots, A_n denoted by $\prod_{i=1}^n A_i$ consists of all n tuples (a_1, \ldots, a_n) , where $a_i \in A_i$ for each i.

1.7 Indexed Sets

Let \triangle be a nonempty set such that $\forall \alpha \in \triangle$, there is a particular set X_{α} . Then the set $\{X_{\alpha} : \alpha \in \triangle\}$ is called a family set and \triangle is called the indexing set.

Example 4. Let $\triangle = \{0, 1, 2, 3, 4\}$, and

$$X_{\alpha} = \{2\alpha + 4, 18, 12 - 2\alpha\} \text{ such that } \alpha \in \Delta.$$

 $e.g., X_0 = \{4, 18, 12\}, X_1 = \{6, 18, 10\}, X_2 = \{8, 18\}, X_3 = \{10, 18, 6\}, X_4 = \{12, 18, 4\}.$

Example 5. Let $\triangle = \mathbb{N}$, and

$$X_{\alpha} = \{\alpha, \alpha + 1, \alpha^2, \}$$
 such that $\alpha \in \Delta$.

e.g., $X_1 = \{1, 2\}, X_2 = \{2, 3, 4\}, \dots$

Note that

- $\bigcup_{\alpha \in \triangle} X_{\alpha} = \{ x : x \in X_{\alpha} \text{ for some } \alpha \in \triangle \}.$
- $\bigcap_{\alpha \in \Delta} X_{\alpha} = \{ x : x \in X_{\alpha} \text{ for all } \alpha \in \Delta \}.$
- $(\bigcup_{\alpha \in \triangle} X_{\alpha})^c = \bigcap_{\alpha \in \triangle} X_{\alpha}^c.$
- $(\bigcap_{\alpha \in \triangle} X_{\alpha})^c = \bigcup_{\alpha \in \triangle} X_{\alpha}^c.$

Example 6. In Example 4, $\bigcup_{\alpha \in \Delta} X_{\alpha} = \{4, 18, 12, 6, 10, 8\}$ and $\bigcap_{\alpha \in \Delta} X_{\alpha} = \{18\}.$

1.8 Power Set

Definition 3. Let A be nonempty set. Then $\mathcal{P}(A) = \{G : G \subseteq A\}$ is called the power set of A.

Example 7. Let $A = \{a, b, c\}$. The power set of A is

$$\mathcal{P}(A) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}, \phi\}.$$

Remark 2. If A has n elements, then $\mathcal{P}(A)$ have 2^n elements.

Lecture Two

1.9 Functions

Definition 4. A function

$$f: A \to B,$$

is a relation such that

- Domain (f) = A.
- If $(x, y) \in f$ and $(x, z) \in f$, then y = z.

Definition 5. A function

$$f: A \to B,$$

is said to be one-one or injective if the distinct elements in A have distinct images, i.e.,

$$f(a) = f(b) \Rightarrow a = b$$

Definition 6. A function

 $f: A \to B,$

is said to be onto or surjective if

$$\forall b \in B, \exists a \in A \text{ such that } f(a) = b.$$

Remark 3. If f is one-one and onto, then f is called bijective and f^{-1} exists.

- **Remark 4.** If $f: X \to Y$ be any function, then $f(X) \subseteq Y$, If f is onto, then f(X) = Y.
 - $f^{-1}(Y) = X$ is always true.

Theorem 1. Let $f : A \to B$, $g : B \to C$, be two functions. $g \circ f : A \to C$ is a function and $g \circ f(a) = g(f(a))$ for every $a \in A$.

1.10 Equivalent Sets

Definition 7. A set A is said to be equivalent to a set B and we write it as $A \sim B$ (read as A is equivalent to B) if there exists a function

$$f: A \to B,$$

which is one-one and onto.

Definition 8. For each natural number k, Let $N_k = \{1, 2, ..., k\}$. A set A is finite if and only if $A = \phi$ or $A \sim N_k$.

Example 8. The set $s = \{1, \frac{1}{2}, c, 99\}$ is finite because there is a one-one and onto correspondence between s and the set $N_4 = \{1, 2, 3, 4\}$ which is $(1, 1)(\frac{1}{2}, 2)(c, 3)(99, 4)$.

Remark 5. • Every subset of a finite set is a finite.

- Cardinal of a set s is the number of elements in the set denoted by $\overline{\overline{s}}$.
- If A and B are finite disjoint sets, then $A \cup B$ is finite and $\overline{\overline{A \cup B}} = \overline{\overline{A}} + \overline{\overline{B}}$.
- If A and B are finite set, then $A \cup B$ is finite and $\overline{\overline{A \cup B}} = \overline{\overline{A}} + \overline{\overline{B}} \overline{\overline{A \cap B}}$.
- If A_1, A_2, \ldots, A_n are finite sets, then $\bigcup_{i=1}^n A_i$ is finite.

Definition 9. A set X is called denumerable with cardinality \varkappa_0 if and only if if it is equivalent to \mathbb{N} , e.g., \mathbb{Z} , \mathbb{N} , \mathbb{Q} , the even integers.

Example 9. The sets $\mathbb{N} = \{1, 2, ...\}$ and $E = \{2, 4, ...\}$ are equivalent since the function

$$f: \mathbb{N} \to E,$$

defined by f(x) = 2x is one-one and onto, so the set E is denumerable.

Remark 6. • A set is countable if it is denumerable or finite.

- Every subset of a countable set is countable.
- The union of countable family of countable sets is countable.
- The union of denumerable family of countable sets is countable.
- If a set is not countable, then we say it is uncountable, e.g., \mathbb{R} , (a, b).

Lecture Three

2 Topological Space

Definition 10. Let X be a nonempty set. Then $\tau \subseteq \mathcal{P}(X)$ is called a topology on X if the following conditions hold:

- 1. $\phi, X \in \tau$.
- 2. $G, H \in \tau \Rightarrow G \cap H \in \tau$, i.e., closed under finite intersection..
- 3. If $\{G_{\alpha} : \alpha \in \delta\}$ is a family of elements of τ . Then $\bigcup_{\alpha \in \Delta} G_{\alpha} \in \tau$, *i.e.*, any arbitrary union of the members of τ is an element of τ .

The pair (X, τ) is called a topological space and the elements of τ are called open sets.

Example 10. Let $X = \{1, 2, 3\}$, then

 $\mathcal{P}(X) = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \phi\}.$

- τ₁ = {φ, X} is a topology on X since the conditions 1, 2, and 3 of Definition 10 hold.
- $\tau_2 = \mathcal{P}(X)$ is a topology on X.
- $\tau_3 = \{\phi, X, \{1\}, \{3\}, \{1,3\}\}$ is a topology on X.
- $\tau_4 = \{\phi, X, \{2\}, \{1, 2\}, \{3\}\}$ is not a topology on X since $\{2\}, \{3\} \in \tau_4$ but $\{2, 3\} \notin \tau_4$, i.e., Condition 3 of Definition 10 doesn't hold.

Example 11. Let $X = \{a, b, c\}$. Then

- $\tau_1 = \{X, \phi, \{a\}\}$ is a topology on X.
- $\tau_2 = \{X, \phi, \{b\}\}$ is a topology on X.
- $\tau_1 \cup \tau_2$ is not a topology on X, since $\{a\} \cup \{b\} = \{a, b\} \notin \tau_1 \cup \tau_2$.

Remark 7. The union of topologies need not be a topology.

Example 12. Let $\mathbb{N} = \{1, 2, ...\}$ and we define

$$\tau = \{\{1, 2, \dots, n\} : n \in \mathbb{N}\} \cup \{\phi, \mathbb{N}\}.$$

Show that τ is a topology on \mathbb{N} .

To show that τ is a topology on \mathbb{N} , We need to verify conditions 1,2, and 3 of Definition 10.

• Clearly $\phi, \mathbb{N} \in \tau$.

• Let $G, H \in \tau$. Then $G = \phi$ and $H = \phi$ or $G = \phi$ and $H = \mathbb{N}$ or $G = \mathbb{N}$ and $H = \mathbb{N}$ in all these cases $G \cap H \in \tau$. Now, Let

$$G = \{\{1, 2, \dots, n\} : n \in \mathbb{N}\}$$

and

$$H = \{\{1, 2, \dots, m\} : m \in \mathbb{N}\},\$$

$$G \cap H = \{\{1, 2, \dots, k\} : k \in \mathbb{N}\} \in \tau \text{ where } k = \min(n, m).$$

• Let $\{G_{\alpha} : \alpha \in \Delta\}$. Then

$$G_{\alpha} = \{1, 2, \dots, n_{\alpha}\}, \alpha \in \Delta,\$$

where

$$\bigcup_{\alpha \in \triangle} G_{\alpha} = \{1, 2, \dots, M\},\$$

and $M = \sup\{n_{\alpha} : \alpha \in \Delta\}, i.e.,$

$$\bigcup_{\alpha \in \Delta} G_{\alpha} \in \tau.$$

Thus (\mathbb{N}, τ) is a topological space.

Definition 11. Let (X, τ) be a topological space and let $F \subseteq X$. Then F is a closed set if and only if $F^c = X \setminus F$ is open, i.e., $F^c \in \tau$.

Example 13. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\} \{b, c, d\}\}$ be a topology on X. The open sets are $X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, and \{b, c, d\},$ where the closed sets are $\{\phi, X, \{b, c, d\}, \{a, b\}, \{b\}\}$.

Note that there are subsets of X which are both open and closed. Also, there are sets which are neither open nor closed.

Corollary 1. Let (X, τ) be a topological space, then

- 1. ϕ and X are closed sets.
- 2. The intersection of any number of closed sets is closed.

Proof. Let $\{F_i : i \in I\}$ be a family of closed sets. $(\bigcap_{i \in I} F_i)^c = \bigcup_{i \in I} F_i^c$ is open since the union of an arbitrary number of open sets is open. \Box

3. The finite union of the closed sets is closed.

Proof. Let F_1, \ldots, F_n be closed sets. $(\bigcup_{i=1}^n F_i)^c = \bigcap_{i=1}^n F_i^c$ is open since the intersection of a finite number of open sets is open.

Theorem 2. If $\{\tau_{\alpha} : \alpha \in \Delta\}$ is a family of topologies on a set X, then

$$\bigcap_{\alpha \in \triangle} \tau_{\alpha} \text{ is a topology on } X$$

Proof. Since τ_{α} is a topology,

$$\phi, X \in \tau_{\alpha}, \ \forall \alpha \in \Delta,$$

i.e., $\phi, X \in \bigcap_{\alpha \in \Delta} \tau_{\alpha}^*$. Let

$$G, H \in \bigcap_{\alpha \in \Delta} \tau_{\alpha}$$
$$G, H \in \tau_{\alpha}, \ \forall \alpha \in \Delta$$

again since τ_{α} is a topology $G \cap H \in \tau_{\alpha}$, $\forall \alpha \in \Delta$ i.e., $G \cap H \in \bigcap_{\alpha \in \Delta} \tau_{\alpha} * *$. Let $\{G_i : i \in I\} \subseteq \bigcap_{\alpha \in \Delta} \tau_{\alpha}$, then $G_i \in \bigcap_{\alpha \in \Delta} \tau_{\alpha}$, i.e., $G_i \in \tau_{\alpha} \forall \alpha \in \Delta, \forall i \in I$, again since τ_{α} is a topology we have that $\bigcup_{i \in I} G_i \in \tau_{\alpha}, \forall \alpha \in \Delta$, i.e., $\bigcup_{i \in I} G_i \in \bigcap_{\alpha \in \Delta} \tau_{\alpha} * * *$ From *, **, and *** we conclude that $\bigcap_{\alpha \in \Delta} \tau_{\alpha}$ is a topology on X which completes the proof.

Remark 8. If X is a finite set and τ is a topology on X, then we call (X, τ) a finite topological space.

2.1 Exercises

- 1. Let $X = \{a, b, c\}$ and let $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ be a topology on X. Find the open and the closed sets of (X, τ) .
- 2. State if the following statement is true or false "Let τ and τ' be two topologies on the same set X. Then $\tau \cup \tau'$ is a topology on X", explain your answer.
- 3. Let

$$\tau = \{n, n+1, n+2, \dots\}, n \in \mathbb{N} \cup \{\phi, \mathbb{N}\}.$$

Prove that τ is topology on \mathbb{N} .

Lecture Four

3 Some Important Topological Spaces

3.1 The Indiscrete Topology

Let X be a nonempty set, then $\tau_{ind} = \{X, \phi\}$ is a topology on X called the indiscrete topology. The open and closed sets in τ_{ind} are ϕ , and X.

3.2 The Discrete Topology

Let X be a nonempty set, then $\tau_{dis} = \mathcal{P}(x)$ is a topology on X called the discrete topology. Note that all subsets of X are both open and closed.

Remark 9. If X is a singleton set, then $\tau_{disc} = \tau_{ind}$ and these are the only topologies on X.

3.3 The Cofinite Topology

Let X be a non empty set, we define the cofinite topology τ_{cof} to be the collection of subsets $G \subseteq X$ whose complement is finite together with the empty set ϕ , i.e.,

$$\tau_{cof} = \{ G \subseteq X : G^c = X \setminus G \text{ is finite} \} \cup \phi.$$

To show τ_{cof} is a topology on X, we need to verify the following:

- $\phi \in \tau_{cof}$ and $X^c = X \setminus X = \phi$ which is finite.
- Let $G, H \in \tau_{cof}$, i.e., $G \subseteq X : G^c = X G$ is finite and $H \subseteq X : H^c = X G$ is finite. Now $G \cap H \subseteq X : (G \cap H)^c = G^c \cup H^c$ which is finite since the union of two finite sets is finite. Thus $G \cap H \in \tau_{cof}$.
- Let $\{G_i : i \in I\} \subseteq T_{cof}$, $(\bigcup_{i \in I} G_i)^c = \bigcap_{i \in I} G_i^c$ is finite since the intersection of finite sets is finite. Thus $\bigcup_{i \in I} G_i \in \tau_{cof}$. So, (X, τ_{cof}) is a topological space.

Example 14. Let $X = \mathbb{R}$ and

$$\tau_{cof} = \{ G \subseteq \mathbb{R} : G^c = X \setminus G \text{ is finite} \}.$$

Decide if the following sets are open, close, or neither.

- $\mathbb{R} \setminus \{1\}$ is open since its complement is finite.
- $\mathbb{R} \setminus (0,1)$ is not open since its complement [0,1] is not finite and not closed since its complement is not open.
- $\{0, -1, 5, 15\}$ is closed set by Remark 11.

- N is not open since its complement is not finite and not closed since its complement is not open.
- $\mathbb{R} \setminus \{1, 2, \dots, 100\}$ is open since its complement is finite.

Remark 10. Let X be a set and τ_{cof} is a topology on X. τ_{cof} is the discrete topology if and only if X is a finite set.

For the topological space (X, τ_{cof}) and X is infinite, the open sets are ϕ , X, $X \setminus \{x_1, \ldots, x_n\}$ and the closed sets are $X, \phi, \{x_1, x_2, \ldots, x_n\}$.

Remark 11. Every finite subset of X is closed in (X, τ_{cof}) where X is an infinite set. The set $F = \{x_1, x_2, \ldots, x_n\}$ is closed in τ_{cof} , since $F^c = X \setminus \{x_1, x_2, \ldots, x_n\}$ is open since $(F^c)^c = \{x_1, x_2, \ldots, x_n\}$ is finite.

3.4 Cocountable Topology

Let X be a set, we define the cocountable topology τ_{coc} to be the collection of subsets $G \subseteq X$ whose complement is countable together with the empty set ϕ , i.e.,

$$\tau_{coc} = \{ G \subseteq X : G^c = X \setminus G \ is \ countable \} \cup \phi.$$

To show τ_{cof} is topology we need to verify the following:

- $\phi \in \tau_{coc}$ and $X^c = X \setminus X = \phi$ which is countable.
- Let $G, H \in \tau_{coc}$, i.e., $G \subseteq X : G^c = X G$ is countable and $H \subseteq X : H^c = X G$ is countable. Now $G \cap H \subseteq X : (G \cap H)^c = G^c \cup H^c$ which is countable since the union of two countable sets is countable. Thus $G \cap H \in \tau_{coc}$.
- Let $\{G_i : i \in I\} \subseteq T_{coc}$, $(\bigcup_{i \in I} G_i)^c = \bigcap_{i \in I} G_i^c$ is countable since the intersection of countable set is countable. Thus $\bigcup_{i \in I} G_i \in \tau_{cof}$. So, (X, τ_{coc}) is a

topological space.

Remark 12. Every countable subset of X is closed in (X, τ_{coc}) , where X is infinite.

Example 15. Let $X = \mathbb{R}$ and

 $\tau_{coc} = \{ G \subseteq \mathbb{R} : G^c = X \setminus G \text{ is countable} \}.$

Decide if the following sets are open, closed, or neither.

- {1,2,3} is closed since its complement is open.
- \mathbb{N} is closed since its complement is open.
- $\mathbb{R} \setminus \{0, -1, 5, 15\}\}$ is open since its complement is countable.
- Q is closed since it's a countable set.
- [0,7] is neither open nor closed.

3.5 Exercises

1. Let $\mathbb R$ be the set of real numbers and let

 $\tau_{coc} = \{ G \subseteq \mathbb{R} : G^c = \mathbb{R} \setminus G \text{ is countable} \} \cup \phi.$

Show that τ_{coc} is a topology on \mathbb{R} .

- 2. Is there a set upon which the discrete and indiscrete topologies are equal.
- 3. State if the following statement is **True** or **False** and justify your answer Let (\mathbb{R}, τ_{cof}) be a topological space. Any finite set is open in τ_{cof} .

Lecture Four

3.6 The Left Ray Topology

Let $X = \mathbb{R}$. We define

$$\tau_{\ell} = \{(-\infty, r) : r \in \mathbb{R}\} \cup \{\phi, \mathbb{R}\}.$$

Now τ_{ℓ} is topology on \mathbb{R} . To verify this we will check Conditions 1, 2, and 3 of Definition 10.

- It is clear that $\phi, \mathbb{R} \in \tau_{\ell}$.
- Let $G, H \in \tau_{\ell}$, then $G = (-\infty, r) : r \in \mathbb{R}$ and $H = (-\infty, m) : m \in \mathbb{R}$, $G \cap H = (-\infty, k)$, where $k = \min\{r, s\}$.
- Let $\{G_{\alpha} : \alpha \in \Delta\} \subseteq \tau_{\ell}$, then $G_{\alpha} = (-\infty, r_{\alpha}), \forall \alpha \in \Delta, \bigcup_{\alpha \in \Delta} G_{\alpha} = \bigcup_{\alpha \in \Delta} (-\infty, r_{\alpha}) = (-\infty, M) \in \tau_{\ell}$, where $M = \sup\{r_{\alpha} : \alpha \in \Delta\}$. So, τ_{ℓ} is a topology on \mathbb{R} .

Example 16. In (X, τ_{ℓ}) , decide if the following sets are open, closed or neither

- $(-\infty, 7)$ is an open set.
- $[7,\infty)$ is a closed set. since $[7,\infty)^c = (-\infty,7)$ is open set.
- (0,5) neither.
- $(2,\infty)$ not closed, not open.
- {1,2,3} neither open nor closed.

3.7 The Right Ray Topology

Let $X = \mathbb{R}$. We define

$$\tau_r = \{(s, \infty) : s \in \mathbb{R}\} \cup \{\phi, \mathbb{R}\}.$$

Now τ_r is topology on \mathbb{R} . To verify this we will check Conditions 1, 2, and 3 of Definition 10.

- It is clear that $\phi, \mathbb{R} \in \tau_r$.
- Let $G, H \in \tau_r$, then $G = (s, \infty)$: $s \in \mathbb{R}$ and $H = (k, \infty)$: $k \in \mathbb{R}$, $G \cap H = (t, \infty) \in \tau_r$, where $t = \max\{s, k\}$.
- Let $\{G_{\alpha} : \alpha \in \Delta\} \subseteq \tau_r$, then $G_{\alpha} = (r_{\alpha}, \infty), \forall \alpha \in \Delta, \bigcup_{\alpha \in \Delta} G_{\alpha} = \bigcup_{\alpha \in \Delta} (s_{\alpha}, \infty) = (M, \infty) \in \tau_r$, where $M = \inf\{s_{\alpha} : \alpha \in \Delta\}$. So, τ_r is topology on \mathbb{R} .

3.8 The Usual Topology

Open sets in \mathbb{R}

Definition 12. Let A be a set of real numbers. A point $x \in A$ is an interior point of A if and only if x belongs to some open interval S_x which is contained in A, i.e., $\forall x \in A; \exists S_x = (a, b) : x \in (a, b) \subseteq A$.

Definition 13. The set A is open if and only if each of its points is an interior point.

Example 17. An open interval (a,b) is an open set in \mathbb{R} , since $\forall x \in (a,b)$, $\exists S_x : x \in S_x \subseteq (a,b)$.

Example 18. The closed interval B = [a, b] is not open set in \mathbb{R} , since any open interval containing a or b must contain points outside of B. Hence the end points a and b are not interior points of B. Also, any singlton $\{x\}$ is not an open set in \mathbb{R} .

Theorem 3. 1. The union of any number of open sets in \mathbb{R} is open.

2. The intersection of any finite number of open sets in \mathbb{R} is open.

Remark 13. The finiteness condition in 2 of Theorem 3 can not be removed, if we consider $A_n = \{(\frac{-1}{n}, \frac{1}{n}) : n \in \mathbb{N}\}$, i.e., $\bigcap_{n=1}^{\infty} (-1, 1), (\frac{-1}{2}, \frac{1}{2}), \dots = \{0\}$ which is not open in \mathbb{R} .

The usual topology

Let $X = \mathbb{R}$ and we define

 $\tau_{u} = \{ G \subseteq \mathbb{R} : \forall x \in G, \exists an open interval (a, b) : x \in (a, b) \subseteq G \} \cup \phi.$

τ_u is a topology on \mathbb{R} . Open and closed sets in τ_u .

- Every open interval is an open set.
- Every closed interval is a closed set since its complement is open.
- Every singleton set is closed since its complement is a union of open sets.
- Every finite set is closed since its complement is a union of open sets.
- The interval [a, b) is not open and not closed.
- The interval $[a, \infty)$ not open but closed.

4 Comparison of Topologies

Definition 14. let τ_1, τ_2 be topologies on the non empty set X. Suppose that each open set in τ_1 is open in τ_2 , that is τ_1 is a subclass of τ_2 , i.e., $\tau_1 \subseteq \tau_2$. In this case we say that τ_1 is coarser or smaller (weaker) than τ_2 or τ_2 is finer or larger than τ_1 .

Remark 14. We say that two topologies are not comparable if neither of them is coarser than the other.

Example 19. Consider τ_{dis}, τ_{ind} and any other topology τ on \mathbb{R} . τ_{dis} is finer than τ and τ is weaker than τ_{dis} . Also, τ_{ind} is weaker than τ and τ is finer than τ_{ind}

Example 20. Consider the topological spaces (\mathbb{R}, τ_u) and (\mathbb{R}, τ_{cof}) . Compare τ_u with τ_{cof} .

Every open set in τ_{cof} has the form ϕ , \mathbb{R} , $\mathbb{R} \setminus \{a_1, \ldots, a_n\}$ which are elements in τ_u , i.e., τ_{cof} is weaker than τ_u . Note that (0,1) is open in τ_u but not open in τ_{cof} since its complement is not finite. So, τ_u is finer than τ_{cof} .

Example 21. Let $X = \{a, b\}$ be a 2-element set and $\tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{b\}\}$ are two topologies on X that are not comparable.

4.1 Exercises

- 1. Compare the cofinite topology with
 - cocountable topology.
 - left ray topology.
- 2. Give an example of a collection of open sets in the space (\mathbb{R}, τ_u) whose intersection is not open.
- 3. State if the following statement is **True** or **False** and justify your answer. The interval $(-\infty, 3]$ is open in τ_u .
- 4. Define the following topological space and describe the closed and open sets in each space where X is a nonempty set.
 - (X, τ_{dis}) .
 - (X, τ_{ind}) .
 - $(\mathbb{R}, \tau_{\ell}).$
 - (\mathbb{R}, τ_r) .
 - $(\mathbb{R}, \tau_{cof}).$
 - $(\mathbb{R}, \tau_{coc}).$
 - (\mathbb{R}, τ_u) .

Lecture Six

5 Topology Induced by Function

Recall Let $f: X \to Y$ be a function. Let $A \subseteq X$ and $C \subseteq Y$. Then

• The image (or range) of A denoted by f(A) is defined as

$$f(A) = \{f(x) : x \in A\}.$$

• The inverse image (or the preimage) of C denoted by $f^{-1}(C)$ is defined as

$$f^{-1}(C) = \{ x \in X : f(x) \in C \}$$

Remark 15.

$$\begin{split} f(A) &\subseteq Y. \\ f^{-1}(C) &\subseteq X. \\ f^{-1}(\phi) &= \phi. \\ f^{-1}(Y) &= X. \end{split}$$

Theorem 4. Let I be an arbitrary set. Let $f : X \to Y$ be a function. Assume $A_i \subseteq X$ and $B_i \subseteq Y$ for all $i \in I$. Then

• $f(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} (f(A_i)).$

•
$$f(\bigcap_{i\in I} A_i) \subseteq \bigcap_{i\in I} (f(A_i)).$$

- $f^{-1}(\bigcup_{i\in I} B_i) = \bigcup_{i\in I} (f^{-1}(B_i)).$
- $f^{-1}(\bigcap_{i \in I} B_i) = \bigcap_{i \in I} (f^{-1}(B_i)).$
- $f^{-1}(B^c) = [f^{-1}(B)]^c$.
- $f(f^{-1}(B)) \subseteq B$.
- $A \subseteq f^{-1}(f(A))$.

Theorem 5. Let $f : X \to Y$ be a function and suppose that X has a topology τ_x . Then the collection

$$\tau_y = \{ V \subseteq Y : f^{-1}(V) \in \tau_x \} \subseteq \mathcal{P}(Y),$$

is atopology on Y called the induced topology by the function f and the topological space (X, τ_x) .

Proof. We need to verify conditions 1, 2, and 3 of Definition 10.

- $\phi \subseteq Y : f^{-1}(\phi) = \phi \in \tau_x$ so $\phi \in \tau_y$. Also, $Y \subseteq Y : f^{-1}(Y) = X \in \tau_x$. Thus condition 1 of Definition 10 holds.
- Let $U, V \in \tau_y$, i.e., $U \subseteq Y : f^{-1}(U) \in \tau_x$ and $V \subseteq Y : f^{-1}(V) \in \tau_x$. Now $U \cap V \subseteq Y : f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V) \in \tau_x$. Thus, $U \cap V \in \tau_y$.
- Let $\{G_i : i \in I\} \subseteq \tau_y$, this means $G_i \subseteq Y : f^{-1}(G_i) \in \tau_x$, $i \in I$. Now $\bigcup_{i \in I} G_i \subseteq Y : f^{-1}(\bigcup_{i \in I} G_i) = \bigcup_{i \in I} f^{-1}(G_i) \in \tau_x$ since it is an arbitrary union of open sets in τ_x . Thus, τ_y is a topology on Y which completes the proof.

Example 22. Let $X = \{1, 2, 3, 4, 5\}$ and let

 $\tau_x = \{\phi, X, \{1\}, \{2, 4\}, \{3, 5\}, \{1, 2, 4\}, \{1, 3, 5\}, \{2, 3, 4, 5\}\}$

be a topology on X. If $Y = \{a, b, c\}$ and

Find τ_y induced by f and the topological space (X, τ) . From the definition of $\tau_y = \{V \subseteq Y : f^{-1}(V) \in \tau_x\}$, we should find the power set of Y and test if the inverse image of each element in $\mathcal{P}(Y)$ is open in τ_x .

$\mathcal{P}(Y)$	$f^{-1}(U): U \in$	Elements of τ_y
	$\mathcal{P}(Y)$	
Y	$f^{-1}(Y) = X \in \tau_x$	$Y \in \tau_y$
ϕ	$f^{-1}(\phi) = \phi \in \tau_x$	$\phi \in \tau_y$
$\{a\}$	$f^{-1}\{a\} = \{1,5\} \notin$	$\{a\} \notin \tau_y$
	$ au_x$	
$\{b\}$	$f^{-1}\{b\} = \{2,4\} \in$	$\{b\} \in \tau_y$
	$ au_x$	
$\{c\}$	$f^{-1}\{c\} = \{3\} \notin$	$\{c\} \notin \tau_y$
	$ au_x$	
$\{a,b\}$	$f^{-1}\{a,b\} =$	$\{a,b\} \notin \tau_y$
	$\{4,2,1,5\} \notin \tau_x$	
$\{a,c\}$	$f^{-1}\{a,c\} =$	$\{a,c\} \in \tau_y$
	$\{1,5,3\} \in \tau_x$	
$\{b, c\}$	$f^{-1}\{b,c\} =$	$\{b,c\} \notin \tau_y$
	$\{2,3,4\}\notin\tau_x$	

Now, $\tau_y = \{Y, \phi, \{b\}, \{a, c\}\}.$

Theorem 6. Let $f: X \to Y$ and let Y have a topology τ_y . Then the collection

$$\tau_x = \{ f^{-1}(U) : U \in \tau_y \} \subseteq \mathcal{P}(x)$$

is a topology on X called the induced topology by the function f and the topological space (Y, τ_y) .

Proof. We need to verify conditions 1, 2, and 3 of Definition 10.

- $f^{-1}(\phi) = \phi, \phi \in \tau_y$ so, $\phi \in \tau_x$. Also, $f^{-1}(Y) = X, Y \in \tau_y$ so, $X \in \tau_x$.
- Let $A_1, A_2 \in \tau_x$, i.e., $\exists U_1 \in \tau_y : A_1 = f^{-1}(U_1)$ and $\exists U_2 \in \tau_y : A_2 = f^{-1}(U_2)$. Now, $A_1 \cap A_2 = f^{-1}(U_1) \cap f^{-1}(U_2) = f^{-1}(U_1 \cap U_2)$ but $U_1 \cap U_2 \in \tau_y$. Thus $A_1 \cap A_2 \in \tau_x$.
- Let $\{G_i : i \in I\} \subseteq \tau_x$, i.e., $\exists U_i \in \tau_y : f^{-1}(U_i) = G_i, \forall i \in I$. Now, $\bigcup_{i \in I} G_i = \bigcup_{i \in I} f^{-1}(U_i) = f^{-1}(\bigcup_{i \in I} U_i)$ but $\bigcup_{i \in I} U_i \in \tau_y$. Thus $\bigcup_{i \in I} G_i \in \tau_x$. Since conditions 1, 2, and 3 of Definition 10 hold, τ_x is a topology on X and this completes the proof.

Example 23. Let $X = \{a, b, c\}$ and $Y = \{1, 3, 5, 7\}$. We define the topology τ_y on Y as

$$\tau_y = \{\phi, Y, \{1, 5\}, \{5, 7\}, \{5\}, \{1, 5, 7\}\}$$

Find τ_x which induced by the topological space (X, τ) and the function $f: X \to Y$

As we know $\tau_x = \{f^{-1}(U) : U \in \tau_y\}$, so we need to find the inverse image of open sets in τ_u .

$U \in \tau_y$	$f^{-1}(U) \in \tau_x$
$\phi \in au_y$	$f^{-1}(\phi) = \phi \in \tau_x$
$Y \in \tau_y$	$f^{-1}(Y) = X \in \tau_x$
$\{5,7\} \in \tau_y$	$f^{-1}(\{5,7\}) = \{b,c\} \in \tau_x$
$\{5\} \in \tau_y$	$f^{-1}(\{5\}) = \phi \in \tau_x$
$\{1,5,7\} \in \tau_y$	$f^{-1}(\{5,7,1\}) = \{a,b,c\} =$
	$X \in \tau_x$
$\{1,5\} \in \tau_y$	$f^{-1}(\{1,5\}) = \{a\} \in \tau_x$

Thus $\tau_x = \{\phi, X, \{b, c\}, \{a\}\}.$

6 Subspace

Remark 16. Let $(A_i)_{i \in I}$ be a family of subsets of X, where I is an arbitrary set. Let $B \subseteq X$. Then

- $B \cap (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (B \cap A_i).$
- $B \cup (\bigcap_{i \in I} A_i) = \bigcap_{i \in I} (B \cup A_i).$

Definition 15. Let (X, τ) be a topological space $A \subseteq X$. Then

$$\tau_{\alpha} = \{ G \cap A : G \in \tau \}$$

is called the relative (induced) topology on A and (A, τ_{α}) is called the subspace of (X, τ) .

Theorem 7. τ_{α} is a topology on A.

Proof. • $\phi \in \tau_{\alpha}$ since $\phi \cap A = \phi : \phi \in \tau$. Also, $A \in \tau_{\alpha}$ since $X \cap A = A : X \in \tau$, note that $A \subseteq X$, so $A \cap X = A$.

- Let $H_1, H_2 \in \tau_{\alpha}$, i.e., $\exists G_1 \in \tau : G_1 \cap A = H_1, \exists G_2 \in \tau : G_2 \cap A = H_2$. Now $H_1 \cap H_2 = G_1 \cap A \cap G_2 \cap A = (G_1 \cap G_2) \cap A \text{ and } (G_1 \cap G_2) \in \tau \text{ as } \tau$ is a topology which is closed under finite intersection. Thus $H_1 \cap H_2 \in \tau_{\alpha}$.
- Let $\{H_i : i \in I\} \subseteq \tau_{\alpha}$, i.e., $\exists G_i \in \tau : G_i \cap A = H_i, \forall i \in I$. Now, $\bigcup_{i \in I} H_i = \bigcup_{i \in I} (G_i \cap A) = A \cap (\bigcup_{i \in I} G_i)$ but $\bigcup_{i \in I} G_i \in \tau$ as τ is a topology which closed under arbitrary union, so $\bigcup_{i \in I} H_i \in \tau_{\alpha}$. Thus τ_{α} is a topology on A and this completes the proof.

6.1 Exercises

1. Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d\}$. We define

$$\tau_x = \{X, \phi, \{1\}, \{2\}, \{1, 2\}\},\$$

to be a topology on X. Find the topology on Y induced by the topological space (X, τ_x) and the following function

$$f = \{(1, a), (2, a), (3, d), (4, b)\}$$

2. Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d\}$. We define

$$\tau_y = \{Y, \phi, \{c\}, \{a, b, c\}, \{c, d\}\},\$$

to be a topology on Y. Find the topology on X induced by the topological space (Y, τ_y) and the following function

$$f = \{(1, a), (2, c), (3, c), (4, d)\}$$

3. Let $X = \{a, b, c, d, e\}$. We define

$$\tau = \{X, \phi, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\},\$$

to be a topology on X. Let $A = \{a, d, e\}$ be a subset of X. Find the relative (induced) topology on A.

Lecture Seven

Example 24. Let $X = \{a, b, c, d, e\}$. We define

$$\tau = \{X, \phi, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\},\$$

to be a topology on X. Let $A = \{a, d, e\}$ be a subset of X. Find the relative (induced) topology on A.

$G \in \tau$	$G \cap A$
$\phi\in\tau$	$\phi \cap A = \phi$
$X \in \tau$	$X \cap A = A$
$\{c,d\} \in \tau$	$\{c,d\} \cap A = \{d\}$
$\{a,c,d\} \in \tau$	$\{a,c,d\}\cap A=\{a,d\}$
$\{b,c,d,e\} \in \tau$	$\{b,c,d,e\}\cap A=\{d,e\}$

 $\tau_{\alpha} = \{A, \phi, \{d\}, \{a, d\}, \{d, e\}\}.$

Example 25. Consider the topological space (\mathbb{R}, τ_u) and the set A = [-1, 1]. State which of the following is open in $\tau_{\alpha} = \{G \cap A : G \in \tau\}.$

- $(\frac{1}{2},1)$ is open in τ_{α} since $\exists (\frac{1}{2},1) \in \tau : (\frac{1}{2},1) \cap [-1,1] = (\frac{1}{2},1).$
- $(\frac{1}{2}, 1]$ is open in τ_{α} since $\exists (\frac{1}{2}, 2) \in \tau : (\frac{1}{2}, 2) \cap [-1, 1] = (\frac{1}{2}, 1].$
- $[\frac{1}{2}, 1)$ is not open in τ_{α} since there is no $U \in \tau : U \cap [-1, 1] = (\frac{1}{2}, 1]$ as the point $\frac{1}{2}$ must be an interior point of U so, $\forall \epsilon > 0$ $U = (\frac{1}{2} \epsilon, 1)$ and it is not possible that $U \cap [-1, 1] = [\frac{1}{2}, 1)$.

Example 26. Consider the topological space $(\mathbb{R}, \tau_{\ell}) = \{(-\infty, a) : a \in \mathbb{R}\}$ and the set A = [0, 1]. Describe $\tau_{\alpha} = \{G \cap A : G \in \tau\}$.

- a < 0, then $A \cap (-\infty, a) = \phi$.
- 0 < a < 1, then $A \cap (-\infty, a) = [0, a)$.
- a > 1, then $A \cap (-\infty, a) = A$.

Thus $\tau_{\alpha} = \{\phi, A, [0, a)\}$ where 0 < a < 1.

Theorem 8. Let A be an open subset of the space (X, τ) . Then $\tau_{\alpha} \subseteq \tau$, i.e., every open set in τ_{α} is open in τ .

Proof. Let $H \in \tau_{\alpha}$ and $A \in \tau$, $\exists G \in \tau : A \cap G = H$ but $A \in \tau$ so, $A \cap G \in \tau$, i.e., $H \in \tau$.

7 Closure of the Set

Definition 16. Let (A, X) be a topological space and $A \subseteq X$. Then the closure of A is the intersection of closed sets in X which contain A and is denoted by \overline{A} , i.e.,

$$\overline{A} = \bigcap \{F : Fis \ closed \ and A \subseteq F\}$$

Example 27. Let $X = \{a, b, c, d, e\}$, we define $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$ to be topology on X. It is easy to see that the closed sets are $\{X, \phi, \{b, c, d, e\}, \{a, b, e\}, \{b, e\}, \{a\}\}$. We can find

- $\overline{\{b\}} = \bigcap \{F : Fis \ closed \ and A \subseteq F\} = X \cap \{b, c, d, e\} \cap \{b, e\} = \{b, e\}.$
- $\overline{\{a,c\}} = X$.
- $\overline{\{b,d\}} = \{b,c,d,e\}.$
- **Remark 17.** 1. \overline{A} is closed since it is an arbitrary intersection of closed sets.
 - 2. $A \subseteq \overline{A}$.
 - 3. If $A \subseteq F$, F is closed, then $\overline{A} \subseteq F$.
 - 4. \overline{A} is the smallest closed set containing A.
 - 5. A is closed iff $\overline{A} = A$.
 - 6. $\overline{\overline{A}} = \overline{A}$. Since $\overline{\overline{A}}$ is closed by 1 and by 5 we have $\overline{\overline{A}} = \overline{A}$.
 - 7. If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.

Proof. By 2, we have $A \subseteq B \subseteq \overline{B}$, but \overline{B} is closed by 4. Now use 3, we get $\overline{A} \subseteq \overline{B}$.

- 8. $\overline{\phi} = \phi$, $\overline{X} = X$. Since ϕ and X are closed sets, by 5 we get these results.
- 9. $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Proof. We have, $A \subseteq A \cup B$ and by $7 \overline{A} \subseteq \overline{A \cup B} *$. The same holds for B, i.e., $B \subseteq A \cup B$ and by $7 \overline{B} \subseteq \overline{A \cup B} *$. From * we have $\overline{A \cup B} \subseteq \overline{A \cup B} * *$ By 2, $A \subseteq \overline{A}$ and $B \subseteq \overline{B}$, $A \cup B \subseteq \overline{A} \cup \overline{B}$. By 7, $\overline{A \cup B} \subseteq \overline{\overline{A} \cup \overline{B}}$ but $\overline{A} \cup \overline{B}$ is a closed set since it is a union of two closed sets and by 5, $\overline{\overline{A} \cup \overline{B}} = \overline{A} \cup \overline{B}$. Thus $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B} * *$ From ** we have $\overline{A \cup B} = \overline{A} \cup \overline{B}$ which completes the proof.

Exercises 7.1

- 1. Consider the topological space (\mathbb{R}, τ_u) and the set $A = [3, 8] \subseteq \mathbb{R}$. Decide if [3,5) is an open set in the relative topology on A.
- 2. Let $X=\{a,b,c\}$ and $\tau=\{\phi,X,\{a\},\{b,c\}\}$ be a topology on X. Find
 - $\overline{\{b\}}$. $\overline{\{c\}}$.

 - {{*a*}}
 - $\overline{\{a,b\}}$

Lecture Eight

Example 28. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ be a topology on X. Find

- $\overline{\{b\}} = \{b, c\}.$
- $\overline{\{c\}} = \{b, c\}.$
- $\overline{\{a\}} = \{a\}$
- $\overline{\{a,b\}} = X$

Remark 18. A subset of a topological space X is said to be dense in X iff $\overline{A} = X$. In Example 28. the subset $\{a, b\}$ is dense in X.

Example 29. In the topological space (X, τ_{ind}) describe the closure of any set $A \subseteq X$.

$$\overline{A} = \begin{cases} A & ifA = \phi \\ X & ifA \neq \phi \end{cases}$$

Example 30. In the topological space (X, τ_{dis}) describe the closure of any set $A \subseteq X$.

 $\overline{A} = A,$

since any set $A \subseteq X$ is closed.

Example 31. In the topological space (\mathbb{R}, τ_{cof}) , the open sets are $\mathbb{R}, \phi, \mathbb{R} \setminus \{x_1, \ldots, x_n\}$ and the closed sets are $\mathbb{R}, \phi, \{x_1, \ldots, x_n\}$. Find

- $\overline{(0,5)} = \mathbb{R}.$
- $\overline{\{3\}} = \{3\}.$
- $\overline{(-\infty,0)} = \mathbb{R}.$
- $\overline{\{1,2,4\}} = \{1,2,4\}.$
- $\overline{\mathbb{N}} = \mathbb{R}$.

Example 32. In the topological space (X, τ_u) , the open sets are $\mathbb{R}, \phi, (a, b)$ and the closed sets are $\mathbb{R}, \phi, [a, b], (-\infty, 0], \{x_1, \ldots, x_n\}$. Find

- $\overline{[1,3)} = [1,3].$
- $\overline{(-\infty,0)} = (-\infty,0].$
- $\overline{\{1,2,4\}}$ = $\{1,2,4\}$.
- $\overline{(1,2)\cup\{3\}} = [1,2]\cup\{3\}.$
- $\overline{\mathbb{Q}} = \mathbb{R}$.

Example 33. In the topological space $(\mathbb{R}, \tau_{\ell})$, the open sets are $\mathbb{R}, \phi, (-\infty, a)$ and the closed sets are $\mathbb{R}, \phi, [a, \infty)$. Find

- $\overline{(1,2)} = [1,\infty).$
- $\overline{(-\infty,3)} = \mathbb{R}.$
- $\mathbb{R} \setminus \{1\} = \overline{(-\infty, 1) \cup (1, \infty)} = \mathbb{R} \cup [1, \infty) = \mathbb{R}.$
- $\overline{(0,\infty)} = [0,\infty).$
- $\overline{[1,\infty)} = [1,\infty).$
- $\overline{(0,2) \cup \{3\}} = [0,\infty) \cup [3,\infty) = [0,\infty).$

Example 34. In the topological space (\mathbb{R}, τ_{coc}) the open sets are $\mathbb{R}, \phi, \mathbb{R} \setminus \{countable set\}$ and the closed sets are $\mathbb{R}, \phi, \{countable set\}$. Find

- $\overline{\{1,2,3\}} = \{1,2,3\}.$
- $\bullet \ \overline{\mathbb{N}} = \mathbb{N}.$
- $\overline{\mathbb{Q}} = \mathbb{Q}$.
- $\overline{(0,1)} = \mathbb{R}$.
- $\overline{[1,\infty]} = \mathbb{R}.$

Example 35. • $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$

Proof. We have $A \cap B \subseteq A$ by 7 in Remark 17, $\overline{A \cap B} \subseteq \overline{A}*$. The same is true for B, i.e., $A \cap B \subseteq B$ by 7 in Remark 17, $\overline{A \cap B} \subseteq \overline{B}*$. From *, $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$ which completes the proof.

• Give an example to show that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$. Consider the topological space (X, τ_u) and the two sets $A = [0, 1), B = (1, 2], \overline{A} = [0, 1]$ and $\overline{B} = [1, 2]$. $\overline{A} \cap \overline{B} = \{1\}$ and $A \cap B = \phi$ where, $\overline{\phi} = \phi$. Thus $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.

Lecture Nine

8 Interior of a set

Definition 17. Let (X, τ) be a topological space and $A \subseteq X$. Then

 A point x ∈ A is an interior point of A if and only if ∃ an open set G : x ∈ G ⊆ A. The set of all interior points of A is denoted by int(A) = A⁰.

Example 36. Consider the topology

$$\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$$

on $X = \{a, b, c, d, e\}$ and the subset $A = \{b, c, d\}$ of X. To find A^0 we will test if for every point in A there exists $G \in \tau$: $x \in G \subseteq A$. The point b is not an interior point of A. The points $c, d \in A^0$ so, $A^0 = \{c, d\}$.

Remark 19. • The set A^0 is the largest open set contained in A, i.e., $A^0 \subseteq A$.

- $A^0 = \bigcup \{ U \in \tau : U \subseteq A \}.$
- Let (X, τ) be a topological space. $A \subseteq X$ is open $\iff \forall x \in A, \exists G \in \tau : x \in G \subseteq A$.
- Let (X, τ) be a topological space. $A \subseteq X$ is open $\iff A^0 = A$.

Proof. We start to prove the direction \Rightarrow . Suppose that $A \subseteq X$ is open, we need to show $A^0 = A$. We know that $A^0 \subseteq A$ so, we will prove $A \subseteq A^0$. Let $x \in A$. Since A is open, $\exists G \in \tau : x \in G \subseteq A$, i.e., $x \in A^0$. Thus $A = A^0$. Now, We prove the direction \Leftarrow . Suppose that $A^0 = A$ and $x \in A = A^0$, this means $\exists G \in \tau : x \in G \subseteq A$, i.e., A is open which completes the proof. \Box

Example 37. Consider the set $A = (0,3] \subseteq \mathbb{R}$. Complete the following table

A = (0,3]			
Toplogical	A^0	\overline{A}	
space			
(\mathbb{R}, τ_{ind})	ϕ	\mathbb{R}	
(\mathbb{R}, τ_{dis})	(0,3]	(0,3]	
(\mathbb{R}, τ_{cof})	ϕ	\mathbb{R}	
$(\mathbb{R}, \tau_{\ell})$	ϕ	$[0,\infty)$	
(\mathbb{R}, τ_u)	(0,3)	A = [0, 3]	
(\mathbb{R}, τ_{coc})	ϕ	R	

Lecture Ten

9 Interior, Boundary and Exterior of a set

Theorem 9. Let (x, τ) be a topological space, $A, B \subseteq X$. Then

- $\phi^0 = \phi$, $X^0 = X$ because ϕ, X are open sets.
- $A \subseteq B \Rightarrow A^0 \subseteq B^0$.

Proof. Suppose that $A \subseteq B$, we have $A^0 \subseteq A \subseteq B$. Let $x \in A^0$, then $\exists G \in \tau : x \in G \subseteq A \subseteq B$ this means $x \in B^0$ which completes the proof. Another proof: we have $A^0 \subseteq A \subseteq B$ and B^0 is the largest open set contained in B and A^0 is an open set contained in B. Thus A^0 must be $\subseteq B^0$.

• $(A \cap B)^0 = A^0 \cap B^0$.

Proof. We need to show $(A \cap B)^0 \subseteq A^0 \cap B^0$ and $A^0 \cap B^0 \subseteq (A \cap B)^0$. We know $A^0 \subseteq A$ and $B^0 \subseteq B$, thus $A^0 \cap B^0 \subseteq A \cap B$ but A^0, B^0 are open and so their intersection, this means $(A^0 \cap B^0)^0 = A^0 \cap B^0$. Thus $A^0 \cap B^0 \subseteq (A \cap B)^0 *$.

Also, $A \cap B \subseteq A$ implies $(A \cap B)^0 \subseteq A^0$. Similarly, $A \cap B \subseteq B$ implies $(A \cap B)^0 \subseteq B^0$. Thus $(A \cap B)^0 \subseteq A^0 \cap B^0$ *. From *, we have $(A \cap B)^0 = A^0 \cap B^0$ which completes the proof.

• $A^0 \cup B^0 \subseteq (A \cup B)^0$.

Proof. We know $A^0 \subseteq A$ and $B^0 \subseteq B$, $A^0 \cup B^0 \subseteq A \cup B$, $(A^0 \cup B^0)^0 \subseteq (A \cup B)^0$ but $(A^0 \cup B^0)$ is open. Thus $A^0 \cup B^0 \subseteq (A \cup B)^0$ which completes the proof.

Example 38. Give an example to show that $A^0 \cup B^0 \neq (A \cup B)^0$. Consider the topological space (\mathbb{R}, τ_u) and $A = [0,3], B = [3,5), A^0 = (0,3), B^0 = (3,5)$. Now, $A \cup B = [0,5), (A \cup B)^0 = (0,5), A^0 \cup B^0 = (0,5) \setminus \{3\}$. Thus $A^0 \cup B^0 \neq (A \cup B)^0$.

Definition 18. Let (X, τ) be a topological space and $A \subseteq X$. Then

- A point x ∈ X is an exterior point of A if and only if ∃ an open set G : x ∈ G ⊆ A^c. The set of all exterior points of A is denoted by Ext(A).
- A point x ∈ X is a boundary point of A if and only if ∀ open set G : x ∈ G ⇒ G ∩ A ≠ φ, and G ∩ A^c ≠ φ. The set of all boundary points of A is denoted by Bd(A).

Example 39. Consider the topology

 $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$

on $X = \{a, b, c, d, e\}$ and the subset $A = \{b, c, d\}$ of X. To find Ext(A) we will test if for every point in X there exists $G \in \tau$: $x \in G \in A^c$. Only the point $a \in Ext(A)$ so, $Ext(A) = \{a\}$. Now to find Bd(A) we will test if for every point in X and for every open set $G : x \in G$, $G \cap A \neq \phi$ and $G \cap A^c \neq \phi$. The points $b, e \in Bd(A)$ so, $Bd(A) = \{b, e\}$.

Remark 20. • For any subset $A \subseteq X$, the sets int(A), Ext(A), and Bd(A) are disjoint.

- From Definitions 17, 18 it is clear that $A^0 \subseteq A$, $Ext(A) \subseteq A^c$.
- From Definition 17, we get that $x \in Ext(A)$ if and only if $\exists G \in \tau : x \in G \subseteq A^c$ if and only if $x \in int(A^c)$. That is $Ext(A) = int(A^c)$.
- If $A \subseteq X$, $x \in X$, then x belongs to one and only one of the sets $A^0, Ext(A), Bd(A)$.
- $A^0 \cup Ext(A) \cup Bd(A) = X.$

Example 40. Consider the set $A = (0,3] \subseteq \mathbb{R}$. Complete the following table

A = (0, 3]				
Toplogical	A^0	Ext(A)	bd(A)	\overline{A}
space				
(\mathbb{R}, τ_{ind})	ϕ	ϕ	R	\mathbb{R}
(\mathbb{R}, τ_{dis})	(0,3]	$\mathbb{R} \setminus (0,3]$	ϕ	(0,3]
(\mathbb{R}, τ_{cof})	ϕ	ϕ	R	\mathbb{R}
(\mathbb{R}, au_{ℓ})	ϕ	$(-\infty,0)$	$[0,\infty)$	$[0,\infty)$
(\mathbb{R}, τ_u)	(0,3)	$(-\infty,0)$ \cup	$\{0,3\}$	[0,3]
		$(3,\infty)$		
(\mathbb{R}, τ_{coc})	ϕ	ϕ	\mathbb{R}	\mathbb{R}

HW try to complete the table with A = [0, 1].

9.1 Exercises

- 1. Let $X = \{a, b, c\}$ and let $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ be a topology on X. Find (Show the details of your work)
 - The closed subsets of (X, τ)
 - $\overline{\{a\}}$
 - $\{b, c\}^0$
 - $Bd(\{b, c\})$

• $Ext(\{b,c\})$

2. Let

$$\tau = \{\{n, n+1, n+2, \dots\} : n \in \mathbb{N}\} \cup \phi.$$

be a topology on $\mathbb N.$

- Find the interior points of the set $A = \{4, 13, 28, 37\}$.
- Find the closure of the set $A = \{7, 24, 47, 85\}.$

Lecture 11

Remark 21. Let (X, τ) be a topological space, $A, B \subseteq X$. Then

• $A \subseteq B \Rightarrow Ext(B) \subseteq Ext(A)$.

Proof. Suppose that $A \subseteq B$, we have $B^c \subseteq A^c$, $(B^c)^0 \subseteq (A^c)^0$ which equivalent to $Ext(B) \subseteq Ext(A)$.

• $Ext(A \cup B) = Ext(A) \cap Ext(B)$.

Proof. $Ext(A \cup B) = ((A \cup B)^c)^0 = (A^c \cap B^c)^0 = (A^c)^0 \cap (B^c)^0 = Ext(A) \cap Ext(B).$

- $EXT(X) = (X^c)^0 = (\phi)^0 = \phi.$
- $EXT(\phi) = (\phi^c)^0 = (X)^0 = X.$
- $Bd(A) = Bd(X \setminus A)$

Proof. From definition a point $x \in X$ is a boundary point of A if and only if \forall open set $G : x \in G \Rightarrow G \cap A \neq \phi$, and $G \cap A^c \neq \phi$ and a point $x \in X$ is a boundary point of $X \setminus A$ if and only if \forall open set $G : x \in G \Rightarrow$ $(G \cap X \setminus A) \neq \phi \Rightarrow G \cap A^c \neq \phi$, and $G \cap (X \setminus A)^c \neq \phi \Rightarrow G \cap A \neq \phi$. So, it is clear that they are the same. \Box

Theorem 10. Let (x, τ) be a topological space, $A \subseteq X$ is open if and only if A contains none of its boundary points.

Proof. We start to prove the direction \Rightarrow . Suppose that A is open, we need to show $A \cap Bd(A) = \phi$. Since A is open, $A = A^0$ and $A^0 \cap Bd(A) = \phi$, i.e., $A \cap Bd(A) = \phi$.

Now, We prove the direction \Leftarrow . Suppose that $A \cap Bd(A) = \phi$, we need to show A is open, i.e., $A = A^0$. It is enough to show $A \subseteq A^0$. Let $x \in A$, then $x \notin Bd(A)$ as $A \cap Bd(A) = \phi$. Also, $A \cap Ext(A) = \phi$ because $x \in A$. But the sets $A^0, Bd(A), Ext(A)$ are disjoint. Thus $x \in A^0$ which completes the proof.

Corollary 2. Let (x, τ) be a topological space, $A \subseteq X$ is closed if and only if A contains all of its of its boundary points.

10 Cluster points, Accumulation points, limit points

Definition 19. Let (X, τ) be a topological space, $A \subseteq X$, a point $x \in X$ is called a cluster point of A (limit point, accumulation point) if and only if every open set containing x contains points of A other than x, i.e.,

$$\forall G \in \tau : x \in G, G \cap A \setminus \{x\} \neq \phi.$$

The set of all cluster points of A is called the derived set of A and is denoted by A'.

Remark 22. Let (X, τ) be a topological space, $A \subseteq X$, a point $x \in X$ is not a limit point of A iff $\exists G \in \tau : x \in G, G \cap A \setminus \{x\} = \phi$.

Example 41. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d, e\}$ be a topology on X. Consider $A = \{a, b, d\}$. Find A'.

- Is a ∈ A'? to answer this question we have to test if all the open sets that contain (a) contain other points of A other than (a). If we consider the open set {a}, we have a ∈ {a} but A ∩ {a} \ {a} = {a, b, d} ∩ φ = φ. Thus a ∉ A'.
- Is b ∈ A'? to answer this question we have to test if all the open sets that contain (b) contain other points of A other than (b). If we consider the open set {b, c}, we have A ∩ {b, c} \ {b} = {a, b, d} ∩ {c} = φ. Thus b ∉ A'.
- Is $c \in A'$? If we consider the open set X, Its clear that $A \cap X \setminus \{c\} \neq \phi$. Now, $c \in \{b, c\}$ and $A \cap \{b, c\} \setminus \{c\} = \{a, b, d\} \cap \{b\} = \{b\} \neq \phi, c \in \{a, b, c\}$ $A \cap \{a, b, c\} \setminus \{c\} = \{a, b, d\} \cap \{a, b\} = \{a, b\} \neq \phi$, $c \in \{b, c, d, e\}$ and $A \cap \{b, c, d, e\} \setminus \{c\} = \{a, b, d\} \cap \{b, d, e\} = \{b, d\} \neq \phi$. So, $\forall G \in \tau : c \in G, G \cap A \setminus \{c\} \neq \phi$. Thus $c \in A'$. Similarly, we can conclude that $d, e \in A'$. Thus, $A' = \{c, d, e\}$.

Example 42. Consider the topological space (\mathbb{R}, τ_{dis}) and a subset $A \subseteq X$. Describe A'.

Let $x \in X$, we can find an open set $G = \{x\} : \{x\} \cap A \setminus \{x\} = \phi$. Thus $x \notin A'$ and $A' = \phi$.

Example 43. Consider the topological space (\mathbb{R}, τ_u) and the set A = (0, 1], then A' = [0, 1]. The solution (in details) is discussed during the lecture.

Lecture 12

Example 44. Consider the topological space (\mathbb{R}, τ_u) and the set $A = \{1, \frac{1}{2}, \frac{1}{3}, ...\}$, then $A' = \{0\}$. The solution (in details) is discussed during the lecture.

Example 45. Consider the topological space (\mathbb{R}, τ_u) and the set $A = \mathbb{Q}$, then $A' = \mathbb{R}$. The solution (in details) is discussed during the lecture.

Example 46. Consider the topological space (\mathbb{R}, τ_u) and the set $A = \mathbb{Z}$, then $A' = \phi$. The solution (in details) is discussed during the lecture.

Example 47. Consider the topological space $(\mathbb{R}, \tau_{\ell})$ and the set $A = (0, 1] \cup \{2\}$, then $A' = [0, \infty)$. The solution (in details) is discussed during the lecture.

Theorem 11. Let (x, τ) be a topological space, $A \subseteq X$, $B \subseteq X$. Then

- $\phi' = \phi$.
- If $A \subset B$, then $A' \subset B'$.

Proof. Suppose that $A \subseteq B$, we need to show $A' \subset B'$. Let $x \in A'$, then $\forall G \in \tau : x \in G, G \cap A \setminus \{x\} \neq \phi$ but from assumption $A \subset B$, so $G \cap B \setminus \{x\} \neq \phi$. Thus $x \in B'$.

• $(A \cup B)' = A' \cup B'$.

Proof. We have $A \subseteq A \cup B$ and $B \subseteq A \cup B, A' \subseteq (A \cup B)'$ and $B' \subseteq (A \cup B)'$. Thus $A' \cup B' \subseteq (A \cup B)'^*$

Now, we need to show $(A \cup B)' \subseteq A' \cup B'$. Let $x \in (A \cup B)'$ and $x \notin A' \cup B'$, i.e., $x \notin A'$ and $x \notin B'$, $\exists G \in \tau : x \in G$, $G \cap A \setminus \{x\} = \phi$, $\exists H \in \tau : x \in H$, $H \cap B \setminus \{x\} = \phi$, $\exists G \cap H \in \tau : x \in (G \cap H)$ and $(G \cap H) \cap (A \cup B) \setminus \{x\} = \phi$. This means that $x \notin (A \cup B)'$ which is a contradiction which completes the proof

• $A' \cap B' \subseteq (A \cap B)'$.

Theorem 12. Let (x, τ) be a topological space, $A \subseteq X$. Then A is closed if and only if A contains all of its cluster points.

Proof. We start to prove the direction \Rightarrow . Suppose that A is closed, we need to show $A' \subseteq A$, i.e., if $x \in A'$, then $x \in A$. Assume $x \in A'$ and $x \notin A$, we will seek for a contradiction. Since $x \notin A$, then $x \in A^c$ and A^c is open because A is closed, this means $\exists G \in \tau : x \in G \subseteq A^c$ this implies to $G \cap A = \phi$. Thus $G \cap A \setminus \{x\} = \phi$, i.e., $x \notin A'$ which contradicts our assumption.

Now, we prove the direction \Leftarrow . Suppose that $A' \subseteq A$, we need to show A is closed, i.e., A^c is open. Let $x \in A^c$, then $x \notin A$. From assumption we have $A' \subseteq A$, so $x \notin A'$, i.e., $\exists G \in \tau : x \in G, G \cap A \setminus \{x\} = \phi$. As $x \in A^c$ we have $G \cap A = \phi$, i.e., $G \subseteq A^c$. Thus A^c is open and A is closed which completes the proof.

Corollary 3. If F	F is a closed subset of any set A, then $F' \subset A$.	
<i>Proof.</i> Suppose the	at $F \subset A$ and F is closed. Then $F' \subset F \subset A$.	

Lecture 13

Theorem 13. Let (x, τ) be a topological space, $A \subseteq X$, $\overline{A} = A^0 \cup Bd(A)$.

Theorem 14. Let (x, τ) be a topological space, $A \subseteq X$, $\overline{A} = A \cup A'$.

Theorem 15. Let (X, τ) be a topological space. $A \subset X$. Then $x \in A$ is an isolated point of A if and only if there exists an open G containing x such that $G \cap A = \{x\}.$

Example 48. Consider the topological space (\mathbb{R}, τ_u) and $A = (0, 1] \cap \{2\}$. Find the isolated points of A?

The only isolated point of A is $\{2\}$.

Example 49. Consider the topological space (\mathbb{R}, τ_u) and $A = \mathbb{N}$. Find the isolated points of A? The isolated points of A is \mathbb{N}

The isolated points of A is \mathbb{N} .

- **Remark 23.** A given point $x \in X$ belongs to one and only one of the following sets Ext(A), A', and the set of the isolated points of A.
 - If τ is smaller, then the point $x \in X$ has a better chance to be a cluster point of A.
 - If τ is larger, then the point $x \in A$ has a better chance to be an isolated point of A.

Theorem 16. Let A be a subset of topological space (X, τ) . Then the following statements are equivalent

- 1. The set A is dense in X.
- 2. If B is any closed subset of X, and $A \subseteq B$, then B = X.
- 3. For each $x \in X$, every open set in X containing x has nonempty intersection with A.
- 4. $(A^C)^0 = \phi$.

Proof. $1 \Rightarrow 2$, suppose that the set A is dense in X and B is any closed subset of X and $A \subseteq B$, we need to show that B = X. It is enough to show $X \subseteq B$. Now, from our assumption $A \subseteq B$, and as we know $\overline{A} \subseteq \overline{B}$. Because A is dense in X, we have $X \subseteq \overline{B}$ but B is closed, i.e., $\overline{B} = B$. Thus $X \subseteq B$.

 $2 \Rightarrow 3$, suppose that B is any closed subset of X, and $A \subseteq B$, then B = X. Let $x \in X$ and let $U \in \tau$ s.t $x \in U$. We need to show $U \cap A \neq \phi$. Assume the contrary $U \cap A = \phi$, then $A \subseteq U^c$ and U^c is closed, from our assumption we conclude that $U^c = X$, i.e., $U = \phi$ but $x \in U = \phi$ which is a contradiction. Thus $U \cap A \neq \phi$.

 $3 \Rightarrow 4$, suppose that $x \in X$, and $\forall U \in \tau, x \in U$, we have $u \cap A \neq \phi$. We need to show $(A^c)^0 = \phi$. Assume the contrary $(A^c)^0 \neq \phi$, then $\exists x \in (A^c)^0$,

i.e., $\exists G \subseteq \tau : x \in G \in A^c$, this implies to $G \cap A = \phi$ which contradicts our

assumption. Thus $(A^c)^0 = \phi$. $4 \Rightarrow 1$, suppose that $(A^c)^0 = \phi$, we need to show $\overline{A} = X$, i.e., $\overline{A} \subseteq X$ and $X \subseteq \overline{A}$. Assume $X \nsubseteq \overline{A}$, i.e., $\exists x \in X$ and $x \notin \overline{A}$, then $x \in (\overline{A})^c$ and $(\overline{A})^c$ is an open set. We know $A \subseteq \overline{A}$, from set theory we have $(\overline{A})^c \subseteq A^c$. The set $(\overline{A})^c$ is an open set contained in A^c and since $(A^c)^0$ is the largest open set contained in (A^c) , we conclude that $(\overline{A})^c \subseteq (A^c)^0$ but we have $x \in (\overline{A})^c \subseteq (A^c)^0$, i.e., $(A^c)^0 \neq \phi$ which is a contradiction, thus $X \subseteq \overline{A}$ and this completes the proof.

Lecture 14

11 Bases and Subbases

Definition 20. Let (X, τ) be a topological space. A base or basis for τ is a collection β of subsets of X such that:

- 1. Each member of β is also a member of τ .
- 2. If $U \in \tau$ and $U \neq \phi$, then U is the union of sets belonging to β .

Remark 24. The elements of β are called basic open sets in X.

Example 50. Let $X = \{1, 2, 3, 4\}$ and let $\tau = \{\phi, X, \{1\}, \{2\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2\}\}$ be a topology on X. The set $\beta = \{\{1\}, \{2\}, \{3, 4\}\}$ is a base for τ because all the elements of β are in τ and each element in τ can be written as union of sets belonging to β .

Example 51. Consider the topological space (\mathbb{R}, τ_{dis}) , the set $\beta = \{\{x\} : x \in \mathbb{R}\}$ is a base for τ_{dis} .

Example 52. Let $X = \{a, b, c\}$ and let $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ be a topology on X. Then the only bases for τ are

- $\beta_1 = \tau$.
- $\beta_2 = \{X, \{a\}, \{b\}\}.$
- $\beta_3 = \{X, \{a\}, \{b\}, \{a, b\}\}.$

Definition 21. Two collections β_1 and β_2 of subsets of X are equivalent bases if there exists a topology τ on X such that β_1 and β_2 are both bases for τ .

Remark 25. $\beta_1, \beta_2, \beta_3$ in Example 52 are equivalent bases for τ .

Remark 26. • Every topology is a base for itself.

- $\phi = \bigcup_{i=\phi} B_i \in \beta.$
- There are more than one base for a topology.
- A base for a topology need not to be a topology on X.

Theorem 17. Let (X, τ) be a topological space and β is a base for τ . Then $U \subseteq X$ is open if and only if $\forall x \in U, \exists B \in \beta \text{ s.t } x \in B \subseteq U$.

Proof. We start to prove the direction \Rightarrow . Suppose that $U \subseteq X$ is open and let $x \in U$. Because β is a base for τ , we can write U as union of elements of β , i.e., $U = \bigcup_{\substack{\alpha \in \triangle \\ B_{\alpha} \in \beta}} B_{\alpha}$. This means there exists $\alpha_0 \in \Delta$ s.t $x \in B_{\alpha_0} \in \beta$ and

$$B_{\alpha_0} \subseteq \bigcup_{\substack{\alpha \in \triangle \\ B_\alpha \in \beta}} B_\alpha = U.$$

Now, we prove the direction \Leftarrow . Suppose that $U \subseteq X$ and $\forall x \in U, \exists B \in \beta$ s.t $x \in B \subseteq U$, we need to show U is open. We know that $\beta \subseteq \tau$, i.e., $B \in \tau$. Thus U is open which completes the proof.

Theorem 18. For a space (X, τ) , a collection $\beta \subseteq \tau$ is a base for τ if and only if $\forall U \in \tau$ and $\forall x \in U \exists B \in \beta : x \in B \subseteq U$.

Example 53. Consider the topological space (\mathbb{R}, τ_u) and Let $\beta = \{(a, b) : a, b \in \mathbb{R}, a < b\}$. Then by Theorem 18 β is a base for the usual topology because $\forall U \in \tau, \forall x \in U, \exists (a, b) \in \beta : x \in (a, b) \subseteq U$.

11.1 Base of Subspace

Theorem 19. Let (X, τ) be a topological space and β is a base for τ . If $A \subseteq X$, then $\beta_{\alpha} = \{B \cap A : B \in \beta\}$ is a base for the subspace topology τ_{α} on A.

Proof. The elements of β_{α} has the form $B \cap A$ and $B \in \beta \subseteq \tau$. Thus $\beta_{\alpha} \subseteq \tau_{\alpha}$. Now, Let $U \in \tau_{\alpha}$ and $x \in U$, $U = G \cap A$ for some $G \in \tau$ and $x \in G \cap A$, i.e., $x \in G$ and $x \in A$, but β is basis for τ so by Theorem 18 $\exists B_0 \in \beta : x \in B_0 \subseteq G$ and $x \in A$, $x \in B_0 \cap A \subseteq G \cap A$. Hence $B_0 \cap A \in \beta_{\alpha}$, by Theorem 18 we conclude that β_{α} is a basis for τ_{α} .

Example 54. Let $X = \{a, b, c, d\}$ be a set and $\tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ be a topology on X. The sub-collection $\beta = \{X, \{a\}, \{b, c\}\}$ form a base for τ . Now, If $A = \{b, c, d\}$ find

- $\tau_{\alpha} = \{\phi, A, \{b, c\}\}.$
- $\beta_{\alpha} = \{A, \{b, c\}, \phi\}.$

Question How we can know if a collection of subsets form a base for some topology? to answer this question, consider the following example

Example 55. Let $X = \{a, b, c, d\}$ be a set and $\beta = \{\{a\}, \{a, b\}, \{b, c\}\}$ is a collection of subsets of X. Can β be a base for some topology. Note that X can not expressed as union of elements of β . Also, as the elements of β are open in τ , then their intersection must be in τ , i.e., $\{b\} \in \tau$ but it can not expressed as a union of elements in β .

Theorem 20. Let β be a collection of subsets of nonempty set X. Then β is a base for some topology on X if and only if the following two conditions hold

- 1. $\forall x \in X, \exists B \in \beta \text{ s.th } x \in B.$
- 2. If $B_1, B_2 \in \beta$ and if $x \in B_1 \cap B_2$, then $\exists B_3 \in \beta$ s.th $x \in B_3 \subseteq B_1 \cap B_2$.

Example 56. Let $X = \{a, b, c, d\}$ and $\beta = \{\{a, b\}, \{b, c, d\}\}$. Does β a base for a topology on X? It is clear that condition 2 of Theorem 19 doesn't hold since $\{a, b\} \cap \{b, c, d\} = \{b\}$ and there is no $B_3 \in \beta : \{b\} \in B_3 \subseteq B_1 \cap B_2$. So, β is not a base for a topology on X.

11.2 Exercises

- 1. State if the following statements are True or False, justify your answer
 - Every topology is a base for itself
 - Let $X = \{1, 2, 3\}$, the set $\beta = \{1, 3\}, \{2, 3\}$ is a base for some topology on X.

Lecture 15

Example 57. Let $x = \{a, b, c\}$ and $\beta = \{\{a\}, \{b\}, \{c\}\}$.

- Show that β is a base for some topology on X. We need to verify conditions

 (1) (2) of Theorem 19 (do it as an exercise).
- Find $\tau(\beta) = \{\{a\}, \{b\}, \{c\}, \phi, X\}.$

Theorem 21. Let (X, τ_1) , (X, τ_2) be topological spaces with bases β_1 , β_2 respectively. Then

$$\tau_1 \subseteq \tau_2 \Leftrightarrow \forall B_1 \in \beta_1, x \in \beta_1, \exists B_2 \in \beta_2 : x \in B_2 \subseteq B_1$$

 $\begin{array}{l} \textit{Proof.} \Rightarrow \textit{Suppose that } \tau_1 \subseteq \tau_2, \textit{ let } B_1 \in \beta_1, x \in B_1, B_1 \in \tau_1, \textit{ since } \tau_1 \subseteq \tau_2\\ B_1 \in \tau_2, \textit{by Theorem 18 we have } \forall x \in B_1 : x \in B_1, \exists B_2 \in \beta_2 : x \in B_2 \subseteq B_1.\\ \textit{Conversely,} \Leftarrow \textit{ suppose that } \forall B_1 \in \beta_1, x \in B, \exists B_2 \in \beta_2 : x \in B_2 \subseteq B_1, \textit{ let } U \in \tau_1, \textit{ then } \exists B_1 \in \beta_1 : x \in B_1 \subseteq U, \textit{ from assumption } \exists B_2 \in \beta_2 : x \in B_2 \subseteq B_1 \subseteq U.\\ \textit{Thus } U \textit{ is open in } \tau_2 \textit{ which completes the proof.} \end{array}$

12 Finite product of Topological Space

Recall that

- If $X_1 \times X_2 \times \cdots \times X_n$ are sets, then the Cartesian product is the set of all *n*- tuples of $X_1 \times X_2 \times \cdots \times X_n = \{(x_1, x_2, \dots, x_n) : x_i \in X_i\}.$
- If $A \subset C, B \subset D$, then $A \times B \subseteq C \times D$.
- $X \times \phi = \phi \times X = \phi$.
- $A \times B = \phi$ if and only if $A = \phi$ or $B = \phi$.
- $X \times (Y \cap Z) = (X \times Y) \cap (X \times Z).$
- $X \times (Y \cup Z) = (X \times Y) \cup (X \times Z).$
- $(X \times Y) \cap (Z \cap W) = (X \cap Z) \times (Y \cap W).$
- $(X \times Y) \cup (Z \cap W) \subseteq (X \cup Z) \times (Y \cup W).$

Now, if τ_i is a topology on X_i for i = 1, 2, ..., n, we will topologize the product set $X_1 \times X_2 \times \cdots \times X_n$.

Theorem 22. Let (x_i, τ_i) , i = 1, 2, ..., n be a finite collection of topological spaces and let $X = X_1, X_2, ..., X_n$ be the set of Cartesian product. If β is the collection of all sets of X of the form $U_1 \times U_2 \times ... U_n$ where $U_i \in \tau_i$, then β is a base for a topology on X.

Definition 22. The topology $\tau(\beta)$ generated by β and having β as a base is called the product topology on $X = X_1 \times X_2 \times \cdots \times X_n$. The space consisting of the set X together with the product topology is called the topological product.

- **Remark 27.** If (X, τ_p) is a product space of spaces (X_k, τ_k) , k = 1, 2, ..., n, then $u \in \tau_p$ if and only if $\forall x \in u, \exists B \in \beta : x \in B \subseteq u$.
 - In the plane \mathbb{R}^2 , an open rectangle is a set of the form $(a,b) \times (c,d)$. Since (a,b) and (c,d) are open in \mathbb{R} , the open rectangles belong to the base β of \mathbb{R}^2 .
 - In the plane \mathbb{R}^2 , the open sets are not necessary only open rectangles as shown in the figure below.

Lecture 16

13 Continuous Function

Definition 23. Let f be a function from $\mathbb{R} \to \mathbb{R}$. The function f is continuous at $x = a \in \mathbb{R}$ if for any $\epsilon > 0$, there exists a real number $\delta > 0$ s.t

$$|x-a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon,$$

this is equivalent to

$$x \in (-\delta + a, \delta + a) \Rightarrow f(c) \in (f(a) - \epsilon, f(a) + \epsilon),$$
$$f(-\delta + a, \delta + a) \subseteq (f(a) - \epsilon, f(a) + \epsilon)$$

Definition 24. Let (X, τ_x) and (Y, τ_y) be topological spaces and the function $f: X \to Y$. The function f is continuous at the point $x_0 \in X$ if and only if for any open set V containing $f(x_0)$, there exists an open set $U \subset X$ containing x_0 such that $f(U) \subseteq V$, i.e.,

$$\forall V \in \tau_u : f(x_0) \in V, \exists U \in \tau_x \ s.t \ f(U) \subseteq V, U \subseteq f^{-1}(V).$$

Remark 28. • The Definition 24 agree with epsilon-delta definition.

- The smaller topology on Y and the larger topology on X, the better chance for the function f to be continuous.
- A given function may be continuous for certain topologies on X and Y but not continuous if different topologies are defined on theses sets.

Example 58. Let $f : X \to Y$ be a function given by f(x) = x, $X, Y = \mathbb{R}$ with usual topology. Show that f is continuous at each $x_0 \in X$. Let $x_0 \in X$ and $V \in \tau_y : f(x_0) \in V$, $f(x_0) = x_0 \in V$, choose U = V and $f(U) = U \subseteq V$. Thus f is continuous at each $x_0 \in X$.

Example 59. Let $f: X \to Y$ be a function given by f(x) = x, $X, Y = \mathbb{R}$ with cofinite and usual topology respectively. Show that f is discontinuous at $x_0 = 1$. We have f(1) = 1, there exists $V = (0, 2) \in \tau_y : f(1) = 1 \in V$. Any U open in τ_x and $1 \in U$ has the form $\mathbb{R} \setminus \{finite set\}$ and f(U) = U. Finally $f(U) \not\subseteq V$. Thus f is discontinuous at x = 1.

Discontinuity Criterion One The function $f : (X, \tau_x) \to (Y, \tau_y)$ is discontinuous at $x = x_0$ if and only if $\exists V \in \tau_y : f(x_0) \in V$ and $\forall U \in \tau_x, x_0 \in U, f(U) \not\subseteq V.$

Example 60. Let $f : X \to Y$ be a function given by f(x) = x, $X, Y = \mathbb{R}$ with usual and discrete topology respectively. Show that f is discontinuous at any $x_0 \in X$.

We have $f(x_0) = x_0$, there exists $V = \{x_0\} \in \tau_{dis} : f(x_0) = x_0 \in V$. Any U open in τ_x and $x_0 \in U$ has the form $(x_0 - \epsilon, x_0 + \epsilon)$ and f(U) = U. Finally $f(U) = (x_0 - \epsilon, x_0 + \epsilon) \not\subseteq V = \{x_0\}$. Thus f is discontinuous at $x = x_0$.

Example 61. Let $f : X \to Y$ be a function given by f(x) = x, $X, Y = \mathbb{R}$ with discrete and usual topology respectively. Show that f is continuous at any $x_0 \in X$.

Let $x_0 \in X$ and $V \in \tau_y : f(x_0) \in V$, $f(x_0) = x_0 \in V$, choose $U = \{x_0\} \in \tau_x$ and $x_0 \in U$ and $f(U) = U = \{x_0\} \subseteq V$. Thus f is continuous at each $x_0 \in X$.

Theorem 23. Let $f : X \to Y$ be a function from one topological space to another. Then the following conditions are equivalent.

- 1. The function f is continuous.
- 2. For each open set $V \subseteq Y$, $f^{-1}(V)$ is open in X.
- 3. For each closed set $M \subseteq Y$, $f^{-1}(M)$ is closed in X.

Proof. First, we will prove the direction $1 \Rightarrow 2$. Suppose that the function f is continuous, and let $V \subseteq Y$ be an open set. We need to show $f^{-1}(V)$ is open in τ_x , i.e., $\forall x \in f^{-1}(V), \exists H \in \tau_x : x \in H \subseteq f^{-1}(V)$. Let $x \in f^{-1}(V)$, this means $f(x) \in V$. Because f is continuous there exists $U \in \tau_x$ such that $x \in U$ and $f(U) \subseteq V, U \subseteq f^{-1}(V)$. Thus $f^{-1}(V)$ is an open set.

Now, we will prove the direction $2 \Rightarrow 1$. Suppose that for each open set $V \subseteq Y$, $f^{-1}(V)$ is open in X. We need to show f is continuous. Let V be any open set in Y such that $f(x) \in V$, from assumption $f^{-1}(V)$ is open in X and $x \in f^{-1}(V)$. Choose $U = f^{-1}(V)$, then $x \in U = f^{-1}(V)$ and $f(U) = f(f^{-1}(V)) \subseteq V$. Thus f is continuous.

Example 62. Let $X = \{a, b, c\}$ and we define $\tau_x = \{\phi, X, \{a\}, \{b, c\}\}$ to be a topology on X. Let $Y = \{x, y, z\}$ and we define $\tau_y = \{\phi, Y, \{y\}, \{z\}\{y, z\}\}$ to be a topology on Y. Prove or disprove if the function $f = \{(a, x), (b, z), (c, z)\}$ is continuous.

We want to show if the pre image of any open set in Y is open in X.

- $f^{-1}(\phi) = \phi$ which is open in X. $f^{-1}(Y) = X$ which is open in X.
- $\int (I) = X \text{ which is open in } X.$
- $f^{-1}(\{y\}) = \phi \text{ which is open in } X.$
- $f^{-1}(\{z\}) = \{b, c\}$ which is open in X.
- $f^{-1}(\{y,z\}) = \{b,c\}$ which is open in X.

Thus f is continuous.

Example 63. Let $f : (X, \tau_{dis}) \to (Y, \tau)$ be a function where τ is any topology on Y. Prove that f is continuous.

Let V be any open set in τ , $f^{-1}(V) \subseteq X$, $f^{-1}(V) \subseteq \mathcal{P}(x)$, $f^{-1}(V) \in \tau_{dis}$. Thus f is continuous.

Example 64. Let $f : (X, \tau_1) \to (Y, \tau_2)$ be a function where f(x) = a for all $x \in X$. Prove that f is continuous. Let V be any open set in τ , then

$$f^{-1}(V) = \begin{cases} X & \text{if } a \in V \\ \phi & \text{if } a \notin V \end{cases}.$$

In both cases $f^{-1}(V)$ is open in τ_1 .

Discontinuity Criterion Two The function $f : (X, \tau_1) \to (Y, \tau_2)$ is discontinuous if and only if there is some open set V open in τ_2 s.t $f^{-1}(V)$ is not open in X.

Example 65. Let $f : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_u)$ $f(x) = x^2$.

1. Find the inverse inverse image of the following set

- $[0,\infty) = \mathbb{R} \setminus \{0\}$
- $(0,\infty) = \mathbb{R}$
- $(-3,\infty) = \mathbb{R}$
- $(4,\infty) = (-\infty,2) \cup ()2,\infty)$
- [0,4) = (-2,2)

2. Show that f is continuous on \mathbb{R} . Let V = (a, b) be any open interval in $Y = \mathbb{R}$ containing f(x), then

$$f^{-1}(V) = \begin{cases} \phi & \text{if } a < 0, b < 0 \\ (-\sqrt{b}, \sqrt{b}) & \text{if } a < 0, b > 0 \\ (-\sqrt{b}, -\sqrt{a}) \cup (\sqrt{a}, \sqrt{b}) & \text{if } a > 0, b > 0 \end{cases}$$

In all cases $f^{-1}(V)$ is open in τ_u . Thus f is continuous on \mathbb{R} ,

Example 66. Let $f: (X, \tau_u) \to (Y, \tau_u)$ be a function where $X = [0, 7], Y = \mathbb{R}$, and

$$f(x) = \begin{cases} 3x & \text{if } 0 \le x \le 4\\ 15 & \text{if } 4 < x \le 7 \end{cases}.$$

Show that f is not continuous at x = 4.

Let V = (11, 13) be an open set in Y such that $f(4) = 12 \in V$, for any U open set in X containing 4, then U contains points x > 4 and f(U) = 15, $f(U) \not\subseteq (11, 13)$.

Example 67. Let $f : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_\ell)$ be a function where f(x) = |x|, show that f is continuous.

Let V be any open set in $(\mathbb{R}, \tau_{\ell})$, then V has the one of the following forms $\phi, \mathbb{R}, (-\infty, r)$. Now $f^{-1}(\phi) = \phi, f^{-1}(\mathbb{R}) = \mathbb{R}, f^{-1}(-\infty, r) = (-r, r)$. In all cases $f^{-1}(v)$ is open in τ_u .

Example 68. Let $f : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_r)$ be a function where f(x) = |x|, show that f is continuous. **HW**.

13.1 Composition of Continuous function

Theorem 24. If $f : X \to Y$ and $g : Y \to Z$ are both continuous functions, then the composition $g \circ f : X \to Z$ is continuous.

Proof. Let V be an open set in Z, $g^{-1}(V)$ is open set in Y since g is continuous, $f^{-1}(g^{-1}(V))$ is open set in X since f is continuous. Thus $(g \circ f)^{-1}(V)$ is an open set in X, i.e., $g \circ f$ is continuous.

13.2 Exercises

- 1. State two conditions on a collection of subsets of a nonempty set X to be a base for some topology on X.
- 2. Define the product topology on the topological spaces $(X_1, \tau_1), (X_2, \tau_2), \ldots, (X_n, \tau_n)$.
- 3. Let $f: (X, \tau_x) \to (Y, \tau_y)$ be a function. Give three equivalent conditions such that the function f to be continuous.
- 4. Let $f: (X, \tau_x) \to (Y, \tau_y)$ be a function. Give two equivalent conditions such that the function f to be discontinuous.

14 Open Functions and Homomorphisim

14.1 Open and Closed Functions

Definition 25. Let (X, τ_x) and (Y, τ_y) be a topological spaces and let $f: X \to Y$ be function. Then

- f is open function if and only for any open set in X, f(G) is open in Y.
- f is closed function if and only for any closed set in X, f(G) is closed in Y.

Remark 29. The function f may be continuous and not open, or continuous and open but not closed, or continuous, open and closed.

Example 69. Let $X = \{a, b, c\}$ and $\tau_x = \{\phi, X, \{a\}, \{b, c\}\}$ be a topology defined on X. $X = \{x, y, z\}$ and $\tau_y = \{\phi, Y, \{y\}\}$ be a topology defined on Y. Define the function $f : X \to Y$ as follows: f(a) = x, f(b) = y, f(c) = y.

- Show that f is continuous.
 f⁻¹(φ) = φ, f⁻¹(Y) = X, f⁻¹({y}) = {b,c}so, the inverse of any open set in Y is open in X.
- Show that f is not open.
 f({a}) = {x}so, there exists an open set in X such that its image is not open in Y.

Show that f is not closed.
 f({a}) = {x}so, there exists a closed set in X such that its image is not closed in Y.

Example 70. Let $f : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_{dis})$ be a function such that f(x) = 5. We can show that f is open, closed and continuous function (verify as HW).

Theorem 25. Let $f: (X, \tau_1) \to (Y, \tau_2)$ be a function. Then

$$f \text{ is open } \Leftrightarrow f(A^0) \subseteq (f(A))^0, \forall A \subseteq X$$

Proof. ⇒ Suppose that f is open and let $A \subseteq X$, $A^0 \subseteq A$, but A^0 is an open set and f is open, so $f(A^0)$ is open in Y and $f(A^0) \subseteq f(A), (f(A^0))^0 \subseteq (f(A))^0$ since $(f(A^0))^0 = f(A^0)$, this equivalent to $(f(A^0) \subseteq (f(A))^0$. Conversely \Leftarrow Suppose that $(f(A^0) \subseteq (f(A))^0$, we want to show f is open. Let G be any open in X, then $G = G^0$. $f(G) = f(G^0) \subseteq (f(G))^0 \subseteq f(G)$, $f(G) = (f(G))^0$, i.e., f(G) is open in Y and thus F is an open function which completes the proof. \Box

14.2 Exercises

- (a) Give an example for a function f which is continuous, closed but not open.
- (b) Let $f: X \to Y$, $g: Y \to Z$ be two functions. Prove that if f and g are open, then $g \circ f$ is open.

Lecture 17

Homeomorphism 14.3

Definition 26. Let $f: X \to Y$ be a bijection function from the space X to the space Y. If f is open and continuous, then f is called a homeomorphism. If f is a homeomorphism from X to Y, then the space X and Y are said to be homeomorphic denoted by $X \cong Y$.

Example 71. Let $f : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_{dis})$ be a function such that f(x) = 5. Then f is not homeomorphism, since it is not onto.

Theorem 26. Let $f: X \to Y$ be bijective. Then the following are equivalent:

- 1. f is homeomorphism.
- 2. f and $f^{-1}: Y \to X$ are both continuous.
- 3. f is continuous and closed.

Proof. $1 \Rightarrow 2$, suppose that $f: X \to Y$ is a bijective and homeomorphism. It cleae that f is continuous, we need to show that it is open. Let V be an open set in X, then $(f^{-1})^{-1}(V) = f(V)$ which is open in Y because f is an open function.

 $2 \Rightarrow 3$, suppose that f and $f^{-1}: Y \to X$ are both continuous, we need to show f is closed. Let U be a closed set in X, $(f^{-1})^{-1}(U) = f(U)$ is closed in Y which completes the proof. $2 \Rightarrow 3$.

do it as exercise.

Definition 27. A property of a space X is called a topological property if and only if every space Y homemorphic to X also has the same property.

Separation Axioms 15

Definition 28. Let (X, τ) be a topological space.

- 1. A space X is a T_0 space if and only if for any $x \neq y$ in X, there exists an open set G such that $x \in G$ and $y \notin G$ or there exists open set H such that $y \in H$ or $x \notin H$.
- 2. A space X is a T_1 space if and only if for any $x \neq y$ in X, there exists an open set G such that $x \in G$ and $y \notin G$ and there exists open set H such that $y \in H$ or $x \notin H$.
- 3. A space X is a T_2 space if and only if for any $x \neq y$ in X, there exist two disjoint open sets G, H such that $x \in G$ and $y \in H$.
- Remark 30. • If X is a T_2 space, then sometimes X is called Hausdorf Space.

 The implication T₂ ⇒ T₁ ⇒ T₀ is true, the converse is not true as we will see in the following examples.

Example 72. Let $X = \{a, b\}$ and $\tau = \{\phi, X, \{a\}\}$ be a topology on X.

- Show that X is T₀ space.
 We have a ≠ b, we need to show there exists an open set G such that a ∈ G and b ∉ G. Choose G = {a}.
- Show that X is not T₁ space. The only open set that contains b is X and it contains a, so X is not T₁ space.

Example 73. Consider the topological space $(\mathbb{R}, \tau_{\ell})$.

- Show that $(\mathbb{R}, \tau_{\ell})$ is a T_0 space. Let $x, y \in \mathbb{R}$ and $x \neq y$ we need to show there exists an open set G such that $x \in G$ and $y \notin G$. Suppose x < y, let $r = \frac{y-x}{2}$. Choose $G = (-\infty, x + r)$, then $x \in G$ and $y \notin G$. Thus $(\mathbb{R}, \tau_{\ell})$ is a T_0 space.
- Show that X is not T_1 space. Let $x, y \in \mathbb{R}$ and $x \neq y$ Let G be an open set that contains y, then $G = (-\infty, k)$ k > y or $G = \mathbb{R}$. In both cases $x \in G$, so $(\mathbb{R}, \tau_{\ell})$ is not T_1 space.

Remark 31. Example 73 shows that the implication $T_0 \Rightarrow T_1$ is not true.

Example 74. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$ be a topology on X. Show that X is not T_0 space.

We have $b \neq c$, the only open open set that contains b is X and it contains c. Also, the only open open set that contains c is X and it contains b. Thus X is not T_0 space.

Example 75. Consider the topological space (\mathbb{R}, τ_{cof}) .

- Show that (\mathbb{R}, τ_{cof}) is a T_1 space.
 - Let $x, y \in \mathbb{R}$ and $x \neq y$ we need to show there exists an open set G such that $x \in G$ and $y \notin G$ and an open set H such that $y \in H$ and $x \notin H$, let $G = \mathbb{R} \setminus \{y\}$ and $H = \mathbb{R} \setminus \{x\}$. It is clear that $x \in G$ and $y \notin G$, $y \in H$ and $x \notin H$, . Thus (\mathbb{R}, τ_{cof}) is a T_1 space.
- Show that (ℝ, τ_{cof}) is not a T₂ space.
 For any open sets G such that x ∈ G and y ∉ G and H such that y ∈ H and x ∉ H, G ∩ H ≠ φ. Thus (ℝ, τ_{cof}) is not a T₂ space.

Example 76. Show that (\mathbb{R}, τ_u) is a T_2 space. Let $x, y \in \mathbb{R}$ and $x \neq y$, let $r = \frac{y-x}{2}$, consider the open sets G = (x - r, x + r), H = (y - r, y + r), it is clear that $G \cap H = \phi$ and $x \in G$ and $y \notin G$, $y \in H$ and $x \notin H$. Thus (\mathbb{R}, τ_u) is a T_2 space.

15.1 Some Properties of T_1 Space

Theorem 27. X is T_1 space if and only if every singleon set is closed in X.

Proof. Suppose that X is T_1 space, we want to prove that foe any $x \in X$, $\{x\}$ is closed. To prove $\{x\}$ is closed, we need to show $X \setminus \{x\}$ is open, i.e., $\forall y \in X \setminus \{x\}, \exists G \in \tau : y \in G \subseteq X \setminus \{x\}$. Let $y \in X \setminus \{x\}$, then $x \neq y$. Since X is T_1 space, there exists two open sets G, H s.t $x \in G$ and $y \notin G, y \in H$ and $x \notin H$ and $G \subseteq X \setminus \{x\}$. Thus, the set $X \setminus \{x\}$ is open in X, i.e., $\{x\}$ is closed in X.

Conversely, Suppose that $\{x\}$ is closed in X, we want to show X is T_1 space. Let $x, y \in X$ and $x \neq y$, then $\{x\}, \{y\}$ are closed in X. Let $G = X \setminus \{x\}$, $H = X \setminus \{y\}$ are open in X and $y \in G$ and $x \notin G$, $x \in H$ and $y \notin H$. Thus X is T_1 space which completes the proof.

Corollary 4. Let X be a T_1 space then every finite set is closed in X.

Proof. Let $A = \{x_1, x_2, \dots, x_n\}$ be a finite set, now by Theorem 27 we conclude that $A = \{x_1\} \cup \{x_2\} \cup \dots \{x_n\}$ is closed since it is a finite union of closed sets.

Theorem 28. The topological space is (X, τ) is a T_1 space if and only if τ contains the cofinite topology on X, i.e., $\tau_c of \subseteq \tau$.

Proof. Suppose that (X, τ) is a T_1 , Let $G \in \tau_{cof}$, $G = X \setminus \{\text{finite set}\}$, $G^c = \{\text{finite set}\}$, since (X, τ) is a T_1 and by Theorem 27 we conclude G^c is closed set (X, τ) , i.e., G is open in (X, τ) , $G \in \tau$.

Conversely, suppose that $\tau_{cof} \subseteq \tau$, let $x, y \in X$ and $x \neq y$, let $G = X \setminus \{x\}$, $H = X \setminus \{y\}$ are open in $\tau_{cof} \subseteq \tau$, it is clear that $y \in G$ and $x \notin G$, $x \in H$ and $y \notin H$. Thus (X, τ) is a T_1 space.

Theorem 29. Every subspace of T_1 space is T_1 space.

Proof. Suppose that (X, τ) is a T_1 space. For any $A \subseteq X$, define τ_{α} on A to be $\tau_{\alpha} = \{A \cap G : G \in \tau\}$, we need to show (A, τ_{α}) is T_1 space. let $x, y \in A$ and $x \neq y$, then $x, y \in X$ and X is T_1 space, then $\exists G, H \in \tau : x \in G$ and $y \not inG$ and $x \notin H, y \in H, x \in G \cap A, y \notin G \cap A$ and $x \notin H \cap A, y \in G \cap A$. Since $G \cap A \in \tau_{\alpha}$, we conclude that every subspace of T_1 space is T_1 space which completes the proof.

Remark 32. • Every subspace of T_0 space is T_0 space.

• Every subspace of T_2 space is T_2 space.(try to prove)

15.2 Topological Property

Definition 29. A property of a space is called a topological property if and only if every space Y homeomorphic to X has the same property.

Example 77. Show that T_0 -property is a topological property.

Proof. Let $f : X \to Y$ be a homeomorphism and suppose that X is a T_0 -space. We need to show Y is T_0 space. Let $y_1, y_2 \in Y, y_1 \neq y_2$, since f is one to one and onto $\exists x_1, x_2 \in X : x_1 \neq x_2$ and $f(x_1) = y_1, f(x_2) = y_2$. Because X is T_0 space, \exists open set $G : x_1 \in G$ and $x_2 \notin G$ or \exists open set $H : x_1 \notin H$ and $x_2 \in H$. f(G), f(H) are open in Y because f is an open function and $f(x_1) \in f(G), f(x_2) \notin f(G)$ or $f(x_1) \notin f(H), f(x_2) \in f(H)$ i.e., $y_1 \in f(G), y_2 \notin f(G)$ or $y_1 \notin f(H), y_2 \in f(H)$. This means that there an open set in Y containing y_1 but not y_2 and another open set in Y containing y_2 but not y_1 . Thus Y is T_0 space.

Remark 33. In the same way as example 77, we can show that T_1, T_2 are topological properties.

Example 78. Let (X, τ) be a Hausdorff space. If τ_1 is a topology for X such that $\tau \subseteq \tau_1$, then prove that (X, τ_1) is also Hausdorff.

Proof. Let (X, τ) be a Hausdorff space and $\tau \subseteq \tau_1$. Let $x, y \in X$ and $x \neq y$. Since X is T_2 - space $\exists G \in \tau : x \in G$ and $y \notin G$ and $\exists H \in \tau : x \notin H$ and $y \in H$ and $G \cup H = \phi$. Since $\tau \subseteq \tau_1$, we have $G, H \in \tau_1$, i.e., (X, τ_1) is a Hausdorff space.

15.3 Normal and Regular Spaces

Definition 30. The space X is called a regular space if and only if for each closed subset $F \subseteq X$ and for each $x \notin F$, there exists two disjoint open sets U and V such that $x \in U$ and $F \subset V$. A regular T_1 - space is called a T_3 - space.

Definition 31. The space X is called a normal space if and only if for each pair of disjoint closed subsets F_1 and F_2 of X, there exists two disjoint open sets U and V such that $F_1 \subseteq U$ and $F_2 \subseteq V$. A normal T_1 - space is called a T_4 - space.

Example 79. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}$.

- Show X is normal. The closed sets are {φ, X, {b, c}, {c}}. Since there is no disjoint closed sets, X is normal.
- Show X is not T₂. Take b ≠ c, the only set contains c is X and intersects with any open set contains b.

• Show that X is not regular.

Consider the closed set $\{b, c\}$ and $a \notin \{b, c\}$, the only closed set contains a is X and it intersects with the set $\{b, c\}$.

Theorem 30. Every T_3 space is T_2 - space.

Proof. Let $x, y \in X$, $x \neq y$. since X is T_1 - space, the set $\{y\}$ is closed in X. Clearly $x \notin \{y\}$, because X is regular space there exists disjoint open sets U and $V : x \in U, \{y\} \subseteq V, x \in U, y \in V$. Thus X is T_2 -space.

Theorem 31. Every T_4 space is T_3 - space.

Proof. Let $x \in X$, F is closed set, $x \notin F$. since X is T_1 - space, the set $\{x\}$ is closed in X. Clearly the sets F, $\{x\}$ are disjoint closed set. Because X is normal space there exists disjoint open sets U and $V : \{x\} \subseteq U, F \subseteq V, x \in U, F \subseteq V$. Thus X is a regular T_1 -space, i.e., X is T_3 -space.

Remark 34. The implication $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$ is true.

15.4 First Axiom of Countability

Definition 32. Let (X, τ) be a topological space and $x \in X$. A family β_x of open sets which contains x is called a local base at x if $\forall u \in \tau : x \in U, \exists V \in \beta_x : x \in V \subseteq U$.

Example 80. Let (X, τ) be a topological space and $x \in X$. The collection $\beta_x = \{V \in \tau : x \in V\}$ is a local base at x.(try to verify)

Example 81. Let $X = \{a, b, c, d\}$, and let $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$ be a topology on X. Then

- $\beta_a = \{X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$ is a local base at a. (Verify).
- $\beta'_a = \{\{a\}\}$ is a local base at a.
- $\beta_b = \{X, \{a, b\}, \{a, b, c\}\}$ is a local base at b.
- $\beta'_b = \{\{a, b\}\}$ is a local base at b.
- Try to find two local bases for c, d.

Definition 33. *First Axiom of countability A* space *X* is called first countable if $\forall x \in X$, there exists a countable local base at *x*.

Example 82. The following are examples of first countable space.

- Any finite topological space.
- Any finite topology on any set.
- Any discrete space, consider the set β_x = {{x}} is a countable local base. (verify).

• The space (\mathbb{R}, τ_u) . To verify this space is a first countable space consider the set $\beta_x = \{(x - r, x + r) : r \in \mathbb{Q}^+\}$ is a countable local base. Clearly the elements of β_x are open sets and the cardinality of β_x is the same as the cardinality of \mathbb{Q}^+ . Now let $U \in \tau$ and $x \in U$ from the definition of open sets in τ_u , there exists $(a, b) : x \in (a, b) \subseteq U$. Let $\epsilon = \min\{|x - a|, |x - b|\}$. There exists $r \in \mathbb{Q}^+$ such that $0 < r < \epsilon$ and $x \in (x - r, x + r) \subseteq (a, b)$. Thus the set $\beta_x = \{(x - r, x + r) : r \in \mathbb{Q}^+\}$ is a countable local base, i.e., the space (\mathbb{R}, τ_u) is first countable space.

Theorem 32. Let X be a first countable space and let $x \in X$. Then there exists a countable local base $\{U_n : n \in \mathbb{N}\}$ at x such that

1. $U_{n+1} \subseteq U_n, \forall n \in \mathbb{N}.$

2. If X is also a T_1 -space, then $\bigcap_{n \in \mathbb{N}} = \{x\}$.

Proof. Suppose that X is a first countable space. For all $x \in X$, X has a countable local base $\beta_x = \{v_1, v_2, \ldots, v_n, \ldots\}$, i.e., $\forall G \in \tau : x \in G, \exists v \in \beta_x : x \in v \subseteq G$. Now, Let $U_1 = v_1, U_2 = v_1 \cap v_2, U_3 = v_1 \cap v_2 \cap v_3, \ldots$, we will show that the set $\{U_1, U_2, \ldots\}$ is countable local base and $U_{n+1} \subseteq U_n, \forall n \in \mathbb{N}$.

- $x \in v_i \Rightarrow x \in U_i$.
- $U_i, i \in \mathbb{N}$ is an open set since its intersection of open sets. Note that $U_1 \subseteq v_1, U_2 \subseteq v_2, \ldots$
- Let $x \in X$, since β_x is a local base, we have $\forall H \in \tau, \exists v_i \in \beta_x : x \in v_i \subseteq H$. So, $x \in U_i \subseteq v_i \subseteq H$.

Thus, the set $\{U_n : n \in \mathbb{N}\}$ is local base and a countable set. Also, $U_2 \subseteq U_1$, $U_3 \subseteq U_2$, ... which completes the proof of 1.

Now to prove 2, Suppose that X is a T_1 space.

Claim
$$\bigcap_{n \in \mathbb{N}} U_n = \{x\}.$$

We proved in 1 that the collection $\{U_n : n \in \mathbb{N}\}$ is a local base, i.e., $\forall x \in X, x \in U_i, \forall i \in \mathbb{N}$ so, $x \in \bigcap_{i=1}^{\infty} U_i, \{x\} \subseteq \bigcap_{i=1}^{\infty} U_i$, we need to show $\bigcap_{i=1}^{\infty} U_i \subseteq \{x\}$ by contrapositive. Let $y \notin \{x\}, y \neq x$. Since X is T_1 space, $\exists G, H \in \tau$ s.th $x \in G$ and $y \notin G, x \notin H, y \in H$. Because the set $\{U_n : n \in \mathbb{N}\}$ is a countable local base we have for some $m \in \mathbb{N} \exists U_m \in \{U_n : n \in \mathbb{N}\}$ s.th $x \in U_m \subseteq G$ because $y \notin G$, this imply to $y \notin U_m$ for some $m \in \mathbb{N}, y \notin \bigcap_{i=1}^{\infty} U_i$. This proves that $\bigcap_{i=1}^{\infty} U_i \subseteq \{x\}$ which completes the proof.

15.5 Second Axiom of Countability

Definition 34. A space (X, τ) is called second countable (or satisfies the second axiom of countability) if and only if there is a countable base for τ .

Example 83. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$ be a topology on X. Then $\beta_a = \{\{a\}\}$ is a local base but not a base.

Theorem 33. Every second countable space is a first countable space.

Example 84. 1. Any finite topological space is second countable.

- 2. Any finite topology on any set is second countable.
- 3. Any discrete space is second countable if and only if X is countable.
- 4. The space (\mathbb{R}, τ_u) is second countable. To verify this consider $\beta = \{(r, s) : r, s \in \mathbb{Q}, \}, |\beta| = |\mathbb{Q} \times \mathbb{Q}|$ so, it is countable and contains open sets. Let $u \in \tau, x \in u$, then $\exists (a, b) : x \in (a, b) \subseteq u$. We know that between any two real numbers, there exists a rational number, thus $\exists (r, s) : r, s \in \mathbb{Q}, x \in (r, s) \subseteq (a, b) \subseteq u$. Hence β is a countable base.

Remark 35. Every second countable space is a first countable space but the converse is not true, consider (\mathbb{R}, τ_{dis}) is a first countable but not a second countable space.

Theorem 34. Any subspace of second countable space is second countable.

Theorem 35. The property of being second countable is a topological property.

Definition 35. A space X is called separable if and only if there exists a countable subset of X which is dense in X.

Example 85. The space (\mathbb{R}, τ_u) is a separable space, the countable dense subset is \mathbb{Q} .

Theorem 36. Every second countable space is separable.

Proof. Let X be a second countable space, then there exists a countable base $\beta = \{B_1, B_2, \dots\}$, pick $x_i \in B_i, i \in \mathbb{N}$

claim the set $D = \{x_i : i \in \mathbb{N}\}$ is a countable dense set. It is clear that $|D| \leq |\beta|$. To show D is dense, it is enough to show that $\forall u \in \tau : x \in u, u \cap A \neq \phi$, see Theorem (15-3). Let u be an open set s.th $x \in u, \exists B_m \in \beta : x_m \in B_m \subseteq u, m \in \mathbb{N}, x_m \in D, u \cap D \neq \phi$. Thus D is a countable dense set which completes the proof.

16 compact Space

Definition 36. Consider the topological space (X, τ) . The set $G = \{G_{\alpha} : \alpha \in \Delta\} \subseteq \tau$ is an open cover of X if $X = \bigcup_{\alpha \in \Delta} G_{\alpha}$.

Example 86. Consider the space (\mathbb{R}, τ_u) . The following are open covers of \mathbb{R}

• $G = \{(-n, n) : n \in \mathbb{N}\}$ since $\mathbb{R} = \bigcup_{n \in \mathbb{N}} (-n, n)$.

- $H = \{(-\infty, n) : n \in \mathbb{N}\}$ since $\mathbb{R} = \bigcup_{n \in \mathbb{N}} (-\infty, n)$.
- $K = \{(n, n+2) : n \in \mathbb{Z}\}$ since $\mathbb{R} = \bigcup_{n \in \mathbb{Z}} (n, n+2).$

Definition 37. Let $A \subseteq X$. The set $H = \{H_{\alpha} : \alpha \in \Delta\} \subseteq \tau$ is an open cover of A if $A \subseteq \bigcup_{\alpha} H_{\alpha}$.

Definition 38. A space (X, τ) is called a compact space if and only if every open cover of X has a finite subcover.

- **Remark 36.** $A \subseteq X$ is compact on X if and only if every open cover of A has a finite subcover.
 - The space (X, τ) is not compact if and only if there exists open cover of X has no finite subcover.

Example 87. Show that (\mathbb{R}, τ_u) is not compact.

Let $G = \{(-n, n) : n \in \mathbb{N}\}$, then G is an open cover of \mathbb{R} . Suppose that G has a finite subcover say $(-n_1, n_1), (-n_2, n_2), \ldots, (-n_k, n_k)$, then $\mathbb{R} = (-n_1, n_1) \cup (-n_2, n_2) \cup \ldots, (-n_k, n_k) = (-n_r, n_r)$ where $n_r = \max\{n_1, n_2, \ldots, n_k\}$ which is impossible. Thus G has no finite subcover and (\mathbb{R}, τ_u) is not compact.

Example 88. Show that (\mathbb{R}, τ_{cof}) is compact, where X be an infinite set. Let $G = \{G_{\alpha} : \alpha \in \Delta\} \subseteq \tau_{cof}$, be any open cover of X. Choose $\alpha_0 \in \Delta$, $G_{\alpha_0} = X \setminus \{x_1, x_2, \ldots, x_n\}$, choose $\alpha_i \in \Delta : x_i \in G_{\alpha_i}, i = 1, \ldots, n$. Now $X = G_{\alpha_0} \cup G_{\alpha_1} \cup G_{\alpha_2} \ldots G_{\alpha_n}$. So, every open cover of X has a finite subcover.

Example 89. Let (X, τ) be a topological space, prove that any finite subset of X is compact.

Proof. Let $A \subset X$, and A is a finite set. Let $G = \{G_{\alpha} : \alpha \in \Delta\} \subseteq \tau$ be any open cover of $A = \{x_1, x_2, \ldots, x_n\}$, i.e., $A \subseteq \bigcup_{\alpha \in \Delta} G_{\alpha}$. Choose $\alpha_i \in \Delta : x_i \in G_{\alpha_i}, i =$

 $1, \ldots, n, A \subseteq \bigcup_{i=1}^{n} G_{\alpha_i}, G$ has a finite subcover and hence A is compact. \Box

Example 90. Show that A = (0, 1) is not compact in (\mathbb{R}, τ_u) . Let $G = \{(\frac{1}{n+1}, 1) : n \in \mathbb{N}\}$ be an open cover of A. Suppose that G has a finite subcover say $(\frac{1}{n_1+1}, 1), (\frac{1}{n_2+1}, 1), \dots, (\frac{1}{n_k+1}, 1)$, then $A \subseteq (\frac{1}{n_1+1}, 1) \cup (\frac{1}{n_2+1}, 1) \cup \cdots \cup (\frac{1}{n_k+1}, 1) = (\frac{1}{n_0+1}, 1)$ where $n_0 = \max\{n_1, n_2, \dots, n_k\}$ which is impossible, thus G has no finite subcover and hence (0, 1) is not compact.

Example 91. 1. Show that $(\mathbb{R}, \tau_{\ell})$ is not compact.

Let $G = \{(-\infty, n) : n \in \mathbb{N}\}$, then G is an open cover of \mathbb{R} . Suppose that G has a finite subcover say $(-\infty, n_1), (-\infty, n_2), \ldots, (-\infty, n_k)$, then $\mathbb{R} = (-\infty, n_1) \cup (-\infty, n_2) \cup \ldots, (-\infty, n_k) = (-\infty, n_r)$ where $n_r = \max\{n_1, n_2, \ldots, n_k\}$ which is impossible. Thus G has no finite subcover and (\mathbb{R}, τ_ℓ) is not compact.

- 2. The subspace $A = \{x : x < 0\}$ is not compact. Let $G = \{(-\infty, \frac{-1}{n}) : n \in \mathbb{N}\}$ be an open cover of A. Suppose that G has a finite subcover say $(-\infty, \frac{-1}{n_1}), (-\infty, \frac{-1}{n_2}), \dots (-\infty, \frac{-1}{n_k})$, then $A \subseteq (-\infty, \frac{-1}{n_1}) \cup (-\infty, \frac{-1}{n_2}) \cup \dots \cup (-\infty, \frac{-1}{n_k}) = (-\infty, \frac{-1}{n_0})$ where $n_0 = \max\{n_1, n_2, \dots, n_k\}$ which is impossible, thus G has no finite subcover and hence (0, 1) is not compact.
- 3. The subspace $A = \{x : x \le 0\}$ is compact. Let $G = \{G_{\alpha} : \alpha \in \Delta\} \subseteq \tau$ be any open cover of A since $0 \in (-\infty, 0], \exists \alpha \in \Delta : 0 \in G_{\alpha} = (-\infty, r)$, where r > 0 it is clear that $A \subseteq (-\infty, r)$, G has a finite subcover and hence A is compact.

Remark 37. Suppose that A and B are compact subspace of a space X, then $A \cap B$ is not compact. Consider the space $(\mathbb{R}, \tau_{\ell})$ and $A = (-\infty, 0) \cup \{2\}$, $B = (-\infty, 0) \cap \{3\}$ in the same way as in example 75 (3), A and B are compact where $A \cap B = (-\infty, 0)$ is not compact be example 75 (2).

Obvious' is the most dangerous word in mathematics. E. T. Bell