
Lecture One

Topolgy *

1 Logic and Set Theory

Definition 1. A set is a collection of definite and distinguishable objects, these
objects are called elements.

Example 1. A = {a, e, i, o, 4} is a set of 5 elements and a ∈ A.

Example 2. B = {x : x is an integer and x > 0} is a set which is written in
builder notation. Note that π /∈ B while 6 ∈ B.

1.1 Subsets

A set A is a subset of B written as A ⊆ B if and only if x ∈ A⇒ x ∈ B and is
read as A is subset of B or A is contained in B or B contains A.

1.2 Equality of Sets

Definition 2. Any two sets A and B are said to be equal if and only if A ⊆ B
and B ⊆ A.

1.3 Set Operations

Let A and B be two sets. Then the following operations are defined.

� A ∪B = {x : x ∈ Aor x ∈ B}.

� A ∩B = {x : x ∈ Aandx ∈ B}.

� A \B = {x : x ∈ Aandx /∈ B}.

� Ac = {x : x ∈ U andx /∈ A}, where U is the universal set.

Note that

� φc = U .

� U c = φ.
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� A ∪Ac = U .

� A ∩Ac = φ.

1.4 Disjoint Sets

Two sets A and B are called disjoint if A ∩B = φ.

1.5 Laws of the Algebra of Sets

Let A, B, and C be sets with U as the universal set. Then

� A ∪A = A.

� A ∩A = A.

� A ∩ (B ∩ C) = (A ∩B) ∩ C.

� A ∪ (B ∪ C) = (A ∪B) ∪ C.

� A ∪B = B ∪A.

� A ∩B = B ∩A.

� A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

� A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

� A ∪ U = U .

� A ∩ U = A.

� A ∩ φ = φ.

� A ∪ φ = A.

� (Ac)c = A.

1.6 Product of the Sets

The product set of A and B, written as A×B consists of all the ordered pairs
(a, b) where a ∈ A and b ∈ B, i.e.,

A×B = {(a, b) : a ∈ A, b ∈ B}.

Example 3. Let A = {1, 2, 3} and B = {a, b}. Then

A×B = {(1, a)(1, b), (2, a)(2, b)(3, a)(3, b)}.

Remark 1. The concept of product of sets can be extended to any finite number

of sets in a natural way. The product of the sets A1, . . . , An denoted by
n∏
i=1

Ai

consists of all n tuples (a1, . . . , an), where ai ∈ Ai for each i.
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1.7 Indexed Sets

Let 4 be a nonempty set such that ∀α ∈ 4, there is a particular set Xα. Then
the set {Xα : α ∈ 4} is called a family set and 4 is called the indexing set.

Example 4. Let 4 = {0, 1, 2, 3, 4}, and

Xα = {2α+ 4, 18, 12− 2α} such thatα ∈ 4.

e.g., X0 = {4, 18, 12}, X1 = {6, 18, 10}, X2 = {8, 18}, X3 = {10, 18, 6}, X4 =
{12, 18, 4}.

Example 5. Let 4 = N, and

Xα = {α, α+ 1, α2, } such thatα ∈ 4.

e.g., X1 = {1, 2}, X2 = {2, 3, 4}, . . . .

Note that

�

⋃
α∈4

Xα = {x : x ∈ Xα for someα ∈ 4}.

�

⋂
α∈4

Xα = {x : x ∈ Xα for all α ∈ 4}.

� (
⋃
α∈4

Xα)c =
⋂
α∈4

Xc
α.

� (
⋂
α∈4

Xα)c =
⋃
α∈4

Xc
α.

Example 6. In Example 4,
⋃
α∈4

Xα = {4, 18, 12, 6, 10, 8} and
⋂
α∈4

Xα = {18}.

1.8 Power Set

Definition 3. Let A be nonempty set. Then P(A) = {G : G ⊆ A} is called the
power set of A.

Example 7. Let A = {a, b, c}. The power set of A is

P(A) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}, φ}.

Remark 2. If A has n elements, then P(A) have 2n elements.
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Lecture Two

1.9 Functions

Definition 4. A function
f : A→ B,

is a relation such that

� Domain (f) = A.

� If (x, y) ∈ f and (x, z) ∈ f , then y = z.

Definition 5. A function
f : A→ B,

is said to be one-one or injective if the distinct elements in A have distinct
images, i.e.,

f(a) = f(b)⇒ a = b

Definition 6. A function
f : A→ B,

is said to be onto or surjective if

∀b ∈ B, ∃a ∈ Asuch that f(a) = b.

Remark 3. If f is one-one and onto, then f is called bijective and f−1 exists.

Remark 4. � If f : X → Y be any function, then f(X) ⊆ Y , If f is onto,
then f(X) = Y .

� f−1(Y ) = X is always true.

Theorem 1. Let f : A→ B,, g : B → C, be two functions. g ◦ f : A→ C is a
function and g ◦ f(a) = g(f(a)) for every a ∈ A.

1.10 Equivalent Sets

Definition 7. A set A is said to be equivalent to a set B and we write it as
A ∼ B (read as A is equivalent to B ) if there exists a function

f : A→ B,

which is one-one and onto.

Definition 8. For each natural number k, Let Nk = {1, 2, . . . , k}. A set A is
finite if and only if A = φ or A ∼ Nk.

Example 8. The set s = {1, 12 , c, 99} is finite because there is a one-one and
onto correspondence between s and the set N4 = {1, 2, 3, 4} which is (1, 1) ( 1

2 , 2) (c, 3) (99, 4).
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Remark 5. � Every subset of a finite set is a finite.

� Cardinal of a set s is the number of elements in the set denoted by s.

� If A and B are finite disjoint sets, then A∪B is finite and A ∪B = A+B.

� If A and B are finite set, then A∪B is finite and A ∪B = A+B−A ∩B.

� If A1, A2, . . . , An are finite sets, then
n⋃
i=1

Ai is finite.

Definition 9. A set X is called denumerable with cardinality κ0 if and only if
if it is equivalent to N, e.g., Z,N, Q, the even integers.

Example 9. The sets N = {1, 2, . . . } and E = {2, 4, . . . } are equivalent since
the function

f : N→ E,

defined by f(x) = 2x is one-one and onto, so the set E is denumerable.

Remark 6. � A set is countable if it is denumerable or finite.

� Every subset of a countable set is countable.

� The union of countable family of countable sets is countable.

� The union of denumerable family of countable sets is countable.

� If a set is not countable, then we say it is uncountable, e.g., R, (a, b).

5



Lecture Three

2 Topological Space

Definition 10. Let X be a nonempty set. Then τ ⊆ P(X) is called a topology
on X if the following conditions hold:

1. φ, X ∈ τ . .

2. G,H ∈ τ ⇒ G ∩H ∈ τ ,i.e., closed under finite intersection..

3. If {Gα : α ∈ δ} is a family of elements of τ . Then
⋃
α∈4

Gα ∈ τ ,i.e., any

arbitrary union of the members of τ is an element of τ ..

The pair (X, τ) is called a topological space and the elements of τ are called open
sets.

Example 10. Let X = {1, 2, 3}, then

P(X) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}{1, 2, 3}, φ}.

� τ1 = {φ,X} is a topology on X since the conditions 1, 2, and 3 of Defini-
tion 10 hold.

� τ2 = P(X) is a topology on X.

� τ3 = {φ,X, {1}, {3}, {1, 3}} is a topology on X.

� τ4 = {φ,X, {2}, {1, 2}, {3}} is not a topology on X since {2}, {3} ∈ τ4 but
{2, 3} /∈ τ4, i.e., Condition 3 of Definition 10 doesn’t hold.

Example 11. Let X = {a, b, c}. Then

� τ1 = {X,φ, {a}} is a topology on X.

� τ2 = {X,φ, {b}} is a topology on X.

� τ1 ∪ τ2 is not a topology on X, since {a} ∪ {b} = {a, b} /∈ τ1 ∪ τ2.

Remark 7. The union of topologies need not be a topology.

Example 12. Let N = {1, 2, . . . } and we define

τ = {{1, 2, . . . , n} : n ∈ N} ∪ {φ,N}.

Show that τ is a topology on N.
To show that τ is a topology on N, We need to verify conditions 1,2, and 3 of
Definition 10.

� Clearly φ,N ∈ τ .
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� Let G,H ∈ τ . Then G = φandH = φ or G = φandH = N or G =
N andH = N in all these cases G ∩H ∈ τ . Now, Let

G = {{1, 2, . . . , n} : n ∈ N},

and
H = {{1, 2, . . . ,m} : m ∈ N},

G ∩H = {{1, 2, . . . , k} : k ∈ N} ∈ τ where k = min(n,m).

� Let {Gα : α ∈ 4}. Then

Gα = {1, 2, . . . , nα}, α ∈ 4,

where ⋃
α∈4

Gα = {1, 2, . . . ,M},

and M = sup{nα : α ∈ 4}, i.e.,⋃
α∈4

Gα ∈ τ.

Thus (N, τ) is a topological space.

Definition 11. Let (X, τ) be a topological space and let F ⊆ X. Then F is a
closed set if and only if F c = X \ F is open, i.e., F c ∈ τ .

Example 13. Let X = {a, b, c, d} and τ = {X,φ, {a}, {c, d}, {a, c, d}{b, c, d}}
be a topology on X. The open sets are X,φ, {a}, {c, d}, {a, c, d}, and{b, c, d},
where the closed sets are {φ,X, {b, c, d}, {a, b}, {b}}.

Note that there are subsets of X which are both open and closed. Also, there
are sets which are neither open nor closed.

Corollary 1. Let (X, τ) be a topological space, then

1. φ and X are closed sets.

2. The intersection of any number of closed sets is closed.

Proof. Let {Fi : i ∈ I} be a family of closed sets. (
⋂
i∈I

Fi)
c =

⋃
i∈I

F ci is

open since the union of an arbitrary number of open sets is open.

3. The finite union of the closed sets is closed.

Proof. Let F1, . . . , Fn be closed sets. (
n⋃
i=1

Fi)
c =

n⋂
i=1

F ci is open since the

intersection of a finite number of open sets is open.
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Theorem 2. If {τα : α ∈ 4} is a family of topologies on a set X, then⋂
α∈4

τα is a topology onX.

Proof. Since τα is a topology,

φ,X ∈ τα, ∀α ∈ 4,

i.e., φ,X ∈
⋂
α∈4

τα*.

Let
G,H ∈

⋂
α∈4

τα

G,H ∈ τα, ∀α ∈ 4,

again since τα is a topology G ∩H ∈ τα, ∀α ∈ 4 i.e., G ∩H ∈
⋂
α∈4

τα ∗ ∗.

Let {Gi : i ∈ I} ⊆
⋂
α∈4

τα, then Gi ∈
⋂
α∈4

τα, i.e., Gi ∈ τα ∀α ∈ 4,∀i ∈ I, again

since τα is a topology we have that
⋃
i∈I

Gi ∈ τα,∀α ∈ 4 , i.e.,
⋃
i∈I

Gi ∈
⋂
α∈4

τα∗∗∗

From *, **, and *** we conclude that
⋂
α∈4

τα is a topology on X which completes

the proof.

Remark 8. If X is a finite set and τ is a topology on X, then we call (X, τ) a
finite topological space.

2.1 Exercises

1. Let X = {a, b, c} and let τ = {X,φ, {a}, {a, b}, {a, c}} be a topology on
X. Find the open and the closed sets of (X, τ).

2. State if the following statement is true or false ”Let τ and τ ′ be two
topologies on the same set X. Then τ ∪ τ ′ is a topology on X”, explain
your answer.

3. Let
τ = {n, n+ 1, n+ 2, . . . }, n ∈ N ∪ {φ,N}.

Prove that τ is topology on N.
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Lecture Four

3 Some Important Topological Spaces

3.1 The Indiscrete Topology

Let X be a nonempty set, then τind = {X,φ} is a topology on X called the
indiscrete topology. The open and closed sets in τind are φ, and X.

3.2 The Discrete Topology

Let X be a nonempty set, then τdis = P(x) is a topology on X called the
discrete topology. Note that all subsets of X are both open and closed.

Remark 9. If X is a singleton set, then τdisc = τind and these are the only
topologies on X.

3.3 The Cofinite Topology

Let X be a non empty set, we define the cofinite topology τcof to be the
collection of subsets G ⊆ X whose complement is finite together with the

empty set φ ,i.e.,

τcof = {G ⊆ X : Gc = X \G is finite} ∪ φ.

To show τcof is a topology on X, we need to verify the following:

� φ ∈ τcof and Xc = X \X = φ which is finite.

� Let G,H ∈ τcof , i.e., G ⊆ X : Gc = X − G is finite and H ⊆ X : Hc =
X − G is finite . Now G ∩H ⊆ X : (G ∩H)c = Gc ∪Hc which is finite
since the union of two finite sets is finite. Thus G ∩H ∈ τcof .

� Let {Gi : i ∈ I} ⊆ Tcof , (
⋃
i∈I

Gi)
c =

⋂
i∈I

Gci is finite since the intersection

of finite sets is finite. Thus
⋃
i∈I

Gi ∈ τcof . So, (X, τcof ) is a topological

space.

Example 14. Let X = R and

τcof = {G ⊆ R : Gc = X \Gis finite}.

Decide if the following sets are open, close, or neither.

� R \ {1} is open since its complement is finite.

� R\(0, 1) is not open since its complement [0, 1] is not finite and not closed
since its complement is not open.

� {0,−1, 5, 15} is closed set by Remark 11.
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� N is not open since its complement is not finite and not closed since its
complement is not open.

� R \ {1, 2, . . . , 100} is open since its complement is finite.

Remark 10. Let X be a set and τcof is a topology on X. τcof is the discrete
topology if and only if X is a finite set.
For the topological space (X, τcof )and X is infinite, the open sets are φ, X,
X \ {x1, . . . , xn} and the closed sets are X,φ, {x1, x2, . . . , xn}.

Remark 11. Every finite subset of X is closed in (X, τcof ) where X is an
infinite set. The set F = {x1, x2, . . . , xn} is closed in τcof , since F c = X \
{x1, x2, . . . , xn} is open since (F c)c = {x1, x2, . . . , xn} is finite.

3.4 Cocountable Topology

Let X be a set, we define the cocountable topology τcoc to be be the collection
of subsets G ⊆ X whose complement is countable together with the empty set

φ, i.e.,

τcoc = {G ⊆ X : Gc = X \G is countable} ∪ φ.

To show τcof is topology we need to verify the following:

� φ ∈ τcoc and Xc = X \X = φ which is countable.

� Let G,H ∈ τcoc, i.e., G ⊆ X : Gc = X − G is countable and H ⊆ X :
Hc = X −G is countable . Now G ∩H ⊆ X : (G ∩H)c = Gc ∪Hc which
is countable since the union of two countable sets is countable. Thus
G ∩H ∈ τcoc.

� Let {Gi : i ∈ I} ⊆ Tcoc, (
⋃
i∈I

Gi)
c =

⋂
i∈I

Gci is countable since the intersec-

tion of countable set is countable. Thus
⋃
i∈I

Gi ∈ τcof . So, (X, τcoc) is a

topological space.

Remark 12. Every countable subset of X is closed in (X, τcoc), where X is
infinite.

Example 15. Let X = R and

τcoc = {G ⊆ R : Gc = X \Gis countable}.

Decide if the following sets are open, closed, or neither.

� {1, 2, 3} is closed since its complement is open.

� N is closed since its complement is open.

� R \ {0,−1, 5, 15}} is open since its complement is countable.

� Q is closed since it’s a countable set.

� [0, 7] is neither open nor closed.
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3.5 Exercises

1. Let R be the set of real numbers and let

τcoc = {G ⊆ R : Gc = R \G is countable} ∪ φ.

Show that τcoc is a topology on R.

2. Is there a set upon which the discrete and indiscrete topologies are equal.

3. State if the following statement is True or False and justify your answer
Let (R, τcof ) be a topological space. Any finite set is open in τcof .
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Lecture Four

3.6 The Left Ray Topology

Let X = R. We define

τ` = {(−∞, r) : r ∈ R} ∪ {φ,R}.

Now τ` is topology on R. To verify this we will check Conditions 1, 2, and 3 of
Definition 10.

� It is clear that φ,R ∈ τ`.

� Let G,H ∈ τ`, then G = (−∞, r) : r ∈ R and H = (−∞,m) : m ∈ R,
G ∩H = (−∞, k), where k = min{r, s}.

� Let {Gα : α ∈ 4} ⊆ τ`, then Gα = (−∞, rα) ,∀α ∈ 4,
⋃
α∈4

Gα =⋃
α∈4

(−∞, rα) = (−∞,M) ∈ τ`, where M = sup{rα : α ∈ 4}. So, τ` is a

topology on R.

Example 16. In (X, τ`), decide if the following sets are open, closed or neither

� (−∞, 7) is an open set.

� [7,∞) is a closed set. since [7,∞)c = (−∞, 7) is open set.

� (0, 5) neither.

� (2,∞) not closed, not open.

� {1, 2, 3} neither open nor closed.

3.7 The Right Ray Topology

Let X = R. We define

τr = {(s,∞) : s ∈ R} ∪ {φ,R}.

Now τr is topology on R. To verify this we will check Conditions 1, 2, and 3 of
Definition 10.

� It is clear that φ,R ∈ τr.

� Let G,H ∈ τr, then G = (s,∞) : s ∈ R and H = (k,∞) : k ∈ R,
G ∩H = (t,∞) ∈ τr, where t = max{s, k}.

� Let {Gα : α ∈ 4} ⊆ τr, then Gα = (rα,∞), ∀α ∈ 4,
⋃
α∈4

Gα =⋃
α∈4

(sα,∞) = (M,∞) ∈ τr, where M = inf{sα : α ∈ 4}. So, τr is

topology on R.
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3.8 The Usual Topology

Open sets in R

Definition 12. Let A be a set of real numbers. A point x ∈ A is an interior
point of A if and only if x belongs to some open interval Sx which is contained
in A, i.e., ∀x ∈ A;∃Sx = (a, b) : x ∈ (a, b) ⊆ A.

Definition 13. The set A is open if and only if each of its points is an interior
point.

Example 17. An open interval (a,b) is an open set in R, since ∀x ∈ (a, b), ∃Sx :
x ∈ Sx ⊆ (a, b).

Example 18. The closed interval B = [a, b] is not open set in R, since any
open interval containing a or b must contain points outside of B. Hence the end
points a and b are not interior points of B. Also, any singlton {x} is not an
open set in R .

Theorem 3. 1. The union of any number of open sets in R is open.

2. The intersection of any finite number of open sets in R is open.

Remark 13. The finiteness condition in 2 of Theorem 3 can not be removed,

if we consider An = {(−1n ,
1
n ) : n ∈ N}, i.e.,

∞⋂
n=1

(−1, 1), (−12 ,
1
2 ), · · · = {0} which

is not open in R.

The usual topology
Let X = R and we define

τu = {G ⊆ R : ∀x ∈ G, ∃ an open interval (a, b) : x ∈ (a, b) ⊆ G} ∪ φ.

τu is a topology on R.
Open and closed sets in τu.

� Every open interval is an open set.

� Every closed interval is a closed set since its complement is open.

� Every singleton set is closed since its complement is a union of open sets.

� Every finite set is closed since its complement is a union of open sets.

� The interval [a, b) is not open and not closed.

� The interval [a,∞) not open but closed.

13



4 Comparison of Topologies

Definition 14. let τ1, τ2 be topologies on the non empty set X. Suppose that
each open set in τ1 is open in τ2 , that is τ1 is a subclass of τ2, i.e., τ1 ⊆ τ2. In
this case we say that τ1 is coarser or smaller (weaker) than τ2 or τ2 is finer or
larger than τ1.

Remark 14. We say that two topologies are not comparable if neither of them
is coarser than the other.

Example 19. Consider τdis, τind and any other topology τ on R. τdis is finer
than τ and τ is weaker than τdis. Also, τind is weaker than τ and τ is finer than
τind

Example 20. Consider the topological spaces (R, τu) and (R, τcof ). Compare
τu with τcof .
Every open set in τcofhas the form φ, R,R \ {a1, . . . , an} which are elements in
τu, i.e., τcof is weaker than τu. Note that (0, 1) is open in τu but not open in
τcof since its complement is not finite. So, τu is finer than τcof .

Example 21. Let X = {a, b} be a 2-element set and τ1 = {φ,X, {a}}, τ2 =
{φ,X, {b}} are two topologies on X that are not comparable.

4.1 Exercises

1. Compare the cofinite topology with

� cocountable topology.

� left ray topology.

2. Give an example of a collection of open sets in the space (R, τu) whose
intersection is not open.

3. State if the following statement is True or False and justify your answer.
The interval (−∞, 3] is open in τu.

4. Define the following topological space and describe the closed and open
sets in each space where X is a nonempty set.

� (X, τdis).

� (X, τind).

� (R, τ`).
� (R, τr).
� (R, τcof ).

� (R, τcoc).
� (R, τu).
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Lecture Six

5 Topology Induced by Function

Recall Let f : X → Y be a function. Let A ⊆ X and C ⊆ Y . Then

� The image (or range) of A denoted by f(A) is defined as

f(A) = {f(x) : x ∈ A}.

� The inverse image (or the preimage ) of C denoted by f−1(C) is defined
as

f−1(C) = {x ∈ X : f(x) ∈ C}.

Remark 15.

f(A) ⊆ Y .

f−1(C) ⊆ X.

f−1(φ) = φ.

f−1(Y ) = X.

Theorem 4. Let I be an arbitrary set. Let f : X → Y be a function. Assume
Ai ⊆ X and Bi ⊆ Y for all i ∈ I. Then

� f(
⋃
i∈I

Ai) =
⋃
i∈I

(f(Ai)).

� f(
⋂
i∈I

Ai) ⊆
⋂
i∈I

(f(Ai)).

� f−1(
⋃
i∈I

Bi) =
⋃
i∈I

(f−1(Bi)).

� f−1(
⋂
i∈I

Bi) =
⋂
i∈I

(f−1(Bi)).

� f−1(Bc) = [f−1(B)]c.

� f(f−1(B)) ⊆ B.

� A ⊆ f−1(f(A)).

Theorem 5. Let f : X → Y be a function and suppose that X has a topology
τx. Then the collection

τy = {V ⊆ Y : f−1(V ) ∈ τx} ⊆ P(Y ),

is atopology on Y called the induced topology by the function f and the topological
space (X, τx).

Proof. We need to verify conditions 1, 2, and 3 of Definition 10.
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� φ ⊆ Y : f−1(φ) = φ ∈ τx so φ ∈ τy. Also, Y ⊆ Y : f−1(Y ) = X ∈ τx.
Thus condition 1 of Definition 10 holds.

� Let U , V ∈ τy, i.e., U ⊆ Y : f−1(U) ∈ τx and V ⊆ Y : f−1(V ) ∈ τx. Now
U ∩ V ⊆ Y : f−1(U ∩ V ) = f−1(U) ∩ f−1(V ) ∈ τx. Thus, U ∩ V ∈ τy.

� Let {Gi : i ∈ I} ⊆ τy, this means Gi ⊆ Y : f−1(Gi) ∈ τx, i ∈ I. Now⋃
i∈I

Gi ⊆ Y : f−1(
⋃
i∈I

Gi) =
⋃
i∈I

f−1(Gi) ∈ τx since it is an arbitrary union

of open sets in τx. Thus, τy is a topology on Y which completes the proof.

Example 22. Let X = {1, 2, 3, 4, 5} and let

τx = {φ,X, {1}, {2, 4}, {3, 5}, {1, 2, 4}, {1, 3, 5}, {2, 3, 4, 5}}

be a topology on X. If Y = {a, b, c} and

1

2

3

4

5

X

a

b

c

Y

f

Find τyinduced by f and the topological space (X, τ).
From the definition of τy = {V ⊆ Y : f−1(V ) ∈ τx}, we should find the power
set of Y and test if the inverse image of each element in P(Y ) is open in τx.

P(Y ) f−1(U) : U ∈
P(Y )

Elements of τy

Y f−1(Y ) = X ∈ τx Y ∈ τy
φ f−1(φ) = φ ∈ τx φ ∈ τy
{a} f−1{a} = {1, 5} /∈

τx

{a} /∈ τy

{b} f−1{b} = {2, 4} ∈
τx

{b} ∈ τy

{c} f−1{c} = {3} /∈
τx

{c} /∈ τy

{a, b} f−1{a, b} =
{4, 2, 1, 5} /∈ τx

{a, b} /∈ τy

{a, c} f−1{a, c} =
{1, 5, 3} ∈ τx

{a, c} ∈ τy

{b, c} f−1{b, c} =
{2, 3, 4} /∈ τx

{b, c} /∈ τy
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Now, τy = {Y, φ, {b}, {a, c}}.
Theorem 6. Let f : X → Y and let Y have a topology τy. Then the collection

τx = {f−1(U) : U ∈ τy} ⊆ P(x)

is a topology on X called the induced topology by the function f and the topo-
logical space (Y, τy).

Proof. We need to verify conditions 1, 2, and 3 of Definition 10.

� f−1(φ) = φ, φ ∈ τy so, φ ∈ τx. Also, f−1(Y ) = X,Y ∈ τy so, X ∈ τx.

� Let A1, A2 ∈ τx, i.e., ∃U1 ∈ τy : A1 = f−1(U1) and ∃U2 ∈ τy : A2 =
f−1(U2). Now, A1∩A2 = f−1(U1)∩f−1(U2) = f−1(U1∩U2) but U1∩U2 ∈
τy. Thus A1 ∩A2 ∈ τx.

� Let {Gi : i ∈ I} ⊆ τx, i.e., ∃Ui ∈ τy : f−1(Ui) = Gi,∀i ∈ I. Now,⋃
i∈I

Gi =
⋃
i∈I

f−1(Ui) = f−1(
⋃
i∈I

Ui) but
⋃
i∈I

Ui ∈ τy. Thus
⋃
i∈I

Gi ∈ τx.

Since conditions 1, 2, and 3 of Definition 10 hold, τx is a topology on X
and this completes the proof.

Example 23. Let X = {a, b.c} and Y = {1, 3, 5, 7}. We define the topology τy
on Y as

τy = {φ, Y, {1, 5}, {5, 7}, {5}, {1, 5, 7}}
Find τx which induced by the topological space (X, τ) and the function f : X → Y

a

b

c

X

1

3

5

7

Yf

As we know τx = {f−1(U) : U ∈ τy}, so we need to find the inverse image of
open sets in τu.

U ∈ τy f−1(U) ∈ τx
φ ∈ τy f−1(φ) = φ ∈ τx
Y ∈ τy f−1(Y ) = X ∈ τx
{5, 7} ∈ τy f−1({5, 7}) = {b, c} ∈ τx
{5} ∈ τy f−1({5}) = φ ∈ τx
{1, 5, 7} ∈ τy f−1({5, 7, 1}) = {a, b, c} =

X ∈ τx
{1, 5} ∈ τy f−1({1, 5}) = {a} ∈ τx

Thus τx = {φ,X, {b, c}, {a}}.
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6 Subspace

Remark 16. Let (Ai)i∈I be a family of subsets of X, where Iis an arbitrary
set. Let B ⊆ X. Then

� B ∩ (
⋃
i∈I

Ai) =
⋃
i∈I

(B ∩Ai).

� B ∪ (
⋂
i∈I

Ai) =
⋂
i∈I

(B ∪Ai).

Definition 15. Let (X, τ) be a topological space A ⊆ X. Then

τα = {G ∩A : G ∈ τ}

is called the relative (induced) topology on A and (A, τα) is called the subspace
of (X, τ).

Theorem 7. τα is a topology on A.

Proof. � φ ∈ τα since φ ∩ A = φ : φ ∈ τ . Also, A ∈ τα since X ∩ A = A :
X ∈ τ , note that A ⊆ X, so A ∩X = A.

� Let H1, H2 ∈ τα, i.e., ∃G1 ∈ τ : G1 ∩ A = H1, ∃G2 ∈ τ : G2 ∩ A = H2.
Now H1 ∩H2 = G1 ∩A ∩G2 ∩A = (G1 ∩G2) ∩Aand (G1 ∩G2) ∈ τ as τ
is a topology which is closed under finite intersection. Thus
H1 ∩H2 ∈ τα.

� Let {Hi : i ∈ I} ⊆ τα, i.e., ∃Gi ∈ τ : Gi ∩ A = Hi,∀i ∈ I. Now,⋃
i∈I

Hi =
⋃
i∈I

(Gi ∩ A) = A ∩ (
⋃
i∈I

Gi) but
⋃
i∈I

Gi ∈ τ as τ is a topology

which closed under arbitrary union, so
⋃
i∈I

Hi ∈ τα. Thus τα is a

topology on A and this completes the proof.

6.1 Exercises

1. Let X = {1, 2, 3, 4} and Y = {a, b, c, d}. We define

τx = {X,φ, {1}, {2}, {1, 2}},

to be a topology on X. Find the topology on Y induced by the topological
space (X, τx) and the following function

f = {(1, a), (2, a), (3, d), (4, b)}

2. Let X = {1, 2, 3, 4} and Y = {a, b, c, d}. We define

τy = {Y, φ, {c}, {a, b, c}, {c, d}},

to be a topology on Y . Find the topology on X induced by the topological
space (Y, τy) and the following function

f = {(1, a), (2, c), (3, c), (4, d)}
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3. Let X = {a, b, c, d, e}. We define

τ = {X,φ, {c, d}, {a, c, d}, {b, c, d, e}},

to be a topology on X. Let A = {a, d, e} be a subset of X. Find the
relative (induced) topology on A.
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Lecture Seven

Example 24. Let X = {a, b, c, d, e}. We define

τ = {X,φ, {c, d}, {a, c, d}, {b, c, d, e}},

to be a topology on X. Let A = {a, d, e} be a subset of X. Find the relative
(induced) topology on A.

G ∈ τ G ∩A
φ ∈ τ φ ∩A = φ
X ∈ τ X ∩A = A
{c, d} ∈ τ {c, d} ∩A = {d}
{a, c, d} ∈ τ {a, c, d} ∩A = {a, d}
{b, c, d, e} ∈ τ {b, c, d, e} ∩A = {d, e}

τα = {A, φ, {d}, {a, d}, {d, e}}.

Example 25. Consider the topological space (R, τu) and the set A = [−1, 1].
State which of the following is open in τα = {G ∩A : G ∈ τ}.

� ( 1
2 , 1) is open in τα since ∃( 1

2 , 1) ∈ τ : ( 1
2 , 1) ∩ [−1, 1] = ( 1

2 , 1).

� ( 1
2 , 1]is open in τα since ∃( 1

2 , 2) ∈ τ : ( 1
2 , 2) ∩ [−1, 1] = (1

2 , 1].

� [ 12 , 1)is not open in τα since there is no U ∈ τ : U ∩ [−1, 1] = ( 1
2 , 1] as the

point 1
2 must be an interior point of U so, ∀ε > 0 U = ( 1

2 − ε, 1) and it is
not possible that U ∩ [−1, 1] = [ 12 , 1).

Example 26. Consider the topological space (R, τ`) = {(−∞, a) : a ∈ R} and
the set A = [0, 1]. Describe τα = {G ∩A : G ∈ τ}.

� a < 0, thenA ∩ (−∞, a) = φ.

� 0 < a < 1, thenA ∩ (−∞, a) = [0, a).

� a > 1, thenA ∩ (−∞, a) = A.

Thus τα = {φ,A, [0, a)} where 0 < a < 1.

Theorem 8. Let A be an open subset of the space (X, τ). Then τα ⊆ τ , i.e.,
every open set in τα is open in τ .

Proof. Let H ∈ τα and A ∈ τ , ∃G ∈ τ : A ∩ G = H but A ∈ τ so, A ∩ G ∈ τ ,
i.e., H ∈ τ .
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7 Closure of the Set

Definition 16. Let (A,X) be a topological space and A ⊆ X. Then the closure
of A is the intersection of closed sets in X which contain A and is denoted by
A, i.e.,

A =
⋂
{F : F is closed andA ⊆ F}.

Example 27. Let X = {a, b, c, d, e}, we define τ = {X,φ, {a}, {c, d}, {a, c, d}, {b, c, d, e}}
to be topology on X. It is easy to see that the closed sets are {X,φ, {b, c, d, e}, {a, b, e}, {b, e}, {a}}.
We can find

� {b} =
⋂
{F : F is closed andA ⊆ F} = X ∩ {b, c, d, e} ∩ {b, e} = {b, e}.

� {a, c} = X.

� {b, d} = {b, c, d, e}.

Remark 17. 1. A is closed since it is an arbitrary intersection of closed
sets.

2. A ⊆ A.

3. If A ⊆ F , F is closed, thenA ⊆ F .

4. A is the smallest closed set containing A.

5. A is closed iff A = A.

6. A = A. Since A is closed by 1 and by 5 we have A = A.

7. If A ⊆ B, then A ⊆ B.

Proof. By 2, we have A ⊆ B ⊆ B, but B is closed by 4. Now use 3, we
get A ⊆ B.

8. φ = φ, X = X. Since φ and X are closed sets, by 5 we get these results.

9. A ∪B = A ∪B

Proof. We have, A ⊆ A∪B and by 7 A ⊆ A ∪B∗. The same holds for B,
i.e., B ⊆ A∪B and by 7 B ⊆ A ∪B∗. From * we have A∪B ⊆ A ∪B ∗ ∗
By 2, A ⊆ A and B ⊆ B, A∪B ⊆ A∪B. By 7, A ∪B ⊆ A ∪B but A∪B
is a closed set since it is a union of two closed sets and by 5, A ∪B = A∪B.
Thus A ∪B ⊆ A ∪B ∗ ∗
From ** we have A ∪B = A ∪B which completes the proof.
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7.1 Exercises

1. Consider the topological space (R, τu) and the set A = [3, 8] ⊆ R. Decide
if [3, 5) is an open set in the relative topology on A.

2. Let X = {a, b, c} and τ = {φ,X, {a}, {b, c}} be a topology on X. Find

� {b}.
� {c}.
� {a}
� {a, b}
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Lecture Eight

Example 28. Let X = {a, b, c} and τ = {φ,X, {a}, {b, c}} be a topology on X.
Find

� {b} = {b, c}.

� {c} = {b, c}.

� {a} = {a}

� {a, b} = X

Remark 18. A subset of a topological space X is said to be dense in X iff
A = X. In Example 28. the subset {a, b} is dense in X.

Example 29. In the topological space (X, τind) describe the closure of any set
A ⊆ X.

A =

{
A ifA = φ

X ifA 6= φ

Example 30. In the topological space (X, τdis) describe the closure of any set
A ⊆ X.

A = A,

since any set A ⊆ X is closed.

Example 31. In the topological space (R, τcof ), the open sets are R, φ,R \
{x1, . . . , xn} and the closed sets are R, φ, {x1, . . . , xn}. Find

� (0, 5) = R.

� {3} = {3}.

� (−∞, 0) = R.

� {1, 2, 4} = {1, 2, 4}.

� N = R.

Example 32. In the topological space (X, τu), the open sets are R, φ, (a, b) and
the closed sets are R, φ, [a, b], (−∞, 0], {x1, . . . , xn}. Find

� [1, 3) = [1, 3].

� (−∞, 0) = (−∞, 0].

� {1, 2, 4}) = {1, 2, 4}.

� (1, 2) ∪ {3} = [1, 2] ∪ {3}.

� Q = R.
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Example 33. In the topological space (R, τ`), the open sets are R, φ, (−∞, a)
and the closed sets are R, φ, [a,∞). Find

� (1, 2) = [1,∞).

� (−∞, 3) = R.

� R \ {1} = (−∞, 1) ∪ (1,∞) = R ∪ [1,∞) = R.

� (0,∞) = [0,∞).

� [1,∞) = [1,∞).

� (0, 2) ∪ {3} = [0,∞) ∪ [3,∞) = [0,∞).

Example 34. In the topological space (R, τcoc) the open sets are R, φ,R \
{countable set} and the closed sets are R, φ, {countable set}. Find

� {1, 2, 3} = {1, 2, 3}.

� N = N.

� Q = Q.

� (0, 1) = R.

� [1,∞] = R.

Example 35. � A ∩B ⊆ A ∩B

Proof. We have A ∩ B ⊆ A by 7 in Remark 17, A ∩B ⊆ A∗. The same
is true for B, i.e., A ∩ B ⊆ B by 7 in Remark 17 , A ∩B ⊆ B∗. From *,
A ∩B ⊆ A ∩B which completes the proof.

� Give an example to show that A ∩B 6= A ∩B.
Consider the topological space (X, τu) and the two sets A = [0, 1), B =
(1, 2], A = [0, 1] and B = [1, 2]. A∩B = {1} and A∩B = φ where, φ = φ.
Thus A ∩B 6= A ∩B.
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Lecture Nine

8 Interior of a set

Definition 17. Let (X, τ) be a topological space and A ⊆ X. Then

� A point x ∈ A is an interior point of A if and only if ∃ an open set G :
x ∈ G ⊆ A. The set of all interior points of A is denoted by int(A)= A0.

Example 36. Consider the topology

τ = {X,φ, {a}, {c, d}, {a, c, d}, {b, c, d, e}}

on X = {a, b, c, d, e} and the subset A = {b, c, d} of X. To find A0 we will test
if for every point in A there exists G ∈ τ : x ∈ G ⊆ A. The point b is not an
interior point of A. The points c, d ∈ A0 so, A0 = {c, d}.

Remark 19. � The set A0 is the largest open set contained in A, i.e., A0 ⊆
A.

� A0 =
⋃
{U ∈ τ : U ⊆ A}.

� Let (X, τ) be a topological space. A ⊆ X is open ⇐⇒ ∀x ∈ A,∃G ∈ τ :
x ∈ G ⊆ A.

� Let (X, τ) be a topological space. A ⊆ X is open ⇐⇒ A0 = A.

Proof. We start to prove the direction ⇒. Suppose that A ⊆ X is open, we
need to show A0 = A. We know that A0 ⊆ A so, we will prove A ⊆ A0. Let
x ∈ A. Since A is open, ∃G ∈ τ : x ∈ G ⊆ A, i.e., x ∈ A0. Thus A = A0. Now,
We prove the direction ⇐. Suppose that A0 = A and x ∈ A = A0, this means
∃G ∈ τ : x ∈ G ⊆ A, i.e., A is open which completes the proof.

Example 37. Consider the set A = (0, 3] ⊆ R. Complete the following table

A = (0, 3]

Toplogical
space

A0 A

(R, τind) φ R
(R, τdis) (0, 3] (0, 3]
(R, τcof ) φ R
(R, τ`) φ [0,∞)
(R, τu) (0, 3) A = [0, 3]
(R, τcoc) φ R
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Lecture Ten

9 Interior, Boundary and Exterior of a set

Theorem 9. Let (x, τ) be a topological space, A,B ⊆ X. Then

� φ0 = φ, X0 = X because φ,X are open sets.

� A ⊆ B ⇒ A0 ⊆ B0.

Proof. Suppose that A ⊆ B, we have A0 ⊆ A ⊆ B. Let x ∈ A0, then
∃G ∈ τ : x ∈ G ⊆ A ⊆ B this means x ∈ B0 which completes the proof.
Another proof: we have A0 ⊆ A ⊆ B and B0 is the largest open set
contained in B and A0 is an open set contained in B. Thus A0 must be
⊆ B0.

� (A ∩B)0 = A0 ∩B0.

Proof. We need to show (A ∩ B)0 ⊆ A0 ∩ B0 and A0 ∩ B0 ⊆ (A ∩ B)0.
We know A0 ⊆ A and B0 ⊆ B, thus A0 ∩ B0 ⊆ A ∩ B but A0, B0 are
open and so their intersection, this means (A0 ∩ B0)0 = A0 ∩ B0. Thus
A0 ∩B0 ⊆ (A ∩B)0∗.
Also, A ∩ B ⊆ A implies (A ∩ B)0 ⊆ A0. Similarly, A ∩ B ⊆ B implies
(A ∩B)0 ⊆ B0. Thus (A ∩B)0 ⊆ A0 ∩B0∗. From *, we have (A ∩B)0 =
A0 ∩B0 which completes the proof.

� A0 ∪B0 ⊆ (A ∪B)0.

Proof. We know A0 ⊆ A and B0 ⊆ B, A0 ∪ B0 ⊆ A ∪ B, (A0 ∪ B0)0 ⊆
(A∪B)0 but (A0∪B0) is open. Thus A0∪B0 ⊆ (A∪B)0 which completes
the proof.

Example 38. Give an example to show that A0 ∪B0 6= (A ∪B)0.
Consider the topological space (R, τu) and A = [0, 3], B = [3, 5), A0 = (0, 3),B0 =
(3, 5). Now, A ∪ B = [0, 5), (A ∪ B)0 = (0, 5), A0 ∪ B0 = (0, 5) \ {3}. Thus
A0 ∪B0 6= (A ∪B)0.

Definition 18. Let (X, τ) be a topological space and A ⊆ X. Then

� A point x ∈ X is an exterior point of A if and only if ∃ an open set G :
x ∈ G ⊆ Ac. The set of all exterior points of A is denoted by Ext(A).

� A point x ∈ X is a boundary point of A if and only if ∀ open set G : x ∈
G ⇒ G ∩ A 6= φ, andG ∩ Ac 6= φ. The set of all boundary points of A is
denoted by Bd(A).
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Example 39. Consider the topology

τ = {X,φ, {a}, {c, d}, {a, c, d}, {b, c, d, e}}

on X = {a, b, c, d, e} and the subset A = {b, c, d} of X. To find Ext(A) we will
test if for every point in X there exists G ∈ τ : x ∈ G ∈ Ac. Only the point
a ∈ Ext(A) so, Ext(A) = {a}. Now to find Bd(A) we will test if for every point
in X and for every open set G : x ∈ G, G∩A 6= φ and G∩Ac 6= φ. The points
b, e ∈ Bd(A) so, Bd(A) = {b, e}.

Remark 20. � For any subset A ⊆ X, the sets int(A), Ext(A), and Bd(A)
are disjoint.

� From Definitions 17, 18 it is clear that A0 ⊆ A, Ext(A) ⊆ Ac.

� From Definition 17, we get that x ∈ Ext(A) if and only if ∃G ∈ τ : x ∈
G ⊆ Ac if and only if x ∈ int(Ac). That is Ext(A) = int(Ac).

� If A ⊆ X, x ∈ X, then x belongs to one and only one of the sets
A0, Ext(A), Bd(A).

� A0 ∪ Ext(A) ∪Bd(A) = X.

Example 40. Consider the set A = (0, 3] ⊆ R. Complete the following table

A = (0, 3]

Toplogical
space

A0 Ext(A) bd(A) A

(R, τind) φ φ R R
(R, τdis) (0, 3] R \ (0, 3] φ (0, 3]
(R, τcof ) φ φ R R
(R, τ`) φ (−∞, 0) [0,∞) [0,∞)
(R, τu) (0, 3) (−∞, 0) ∪

(3,∞)
{0, 3} [0, 3]

(R, τcoc) φ φ R R

HW try to complete the table with A = [0, 1].

9.1 Exercises

1. Let X = {a, b, c} and let τ = {X,φ, {a}, {a, b}, {a, c}} be a topology on
X. Find (Show the details of your work)

� The closed subsets of (X, τ)

� {a}
� {b, c}0

� Bd({b, c})
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� Ext({b, c})

2. Let
τ = {{n, n+ 1, n+ 2, . . . } : n ∈ N} ∪ φ.

be a topology on N.

� Find the interior points of the set A = {4, 13, 28, 37}.
� Find the closure of the set A = {7, 24, 47, 85}.
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Lecture 11

Remark 21. Let (X, τ) be a topological space, A,B ⊆ X. Then

� A ⊆ B ⇒ Ext(B) ⊆ Ext(A).

Proof. Suppose that A ⊆ B, we have Bc ⊆ Ac, (Bc)0 ⊆ (Ac)0 which
equivalent to Ext(B) ⊆ Ext(A).

� Ext(A ∪B) = Ext(A) ∩ Ext(B).

Proof. Ext(A∪B) = ((A∪B)c)0 = (Ac∩Bc)0 = (Ac)0∩(Bc)0 = Ext(A)∩
Ext(B).

� EXT (X) = (Xc)0 = (φ)0 = φ.

� EXT (φ) = (φc)0 = (X)0 = X.

� Bd(A) = Bd(X \A)

Proof. From definition a point x ∈ X is a boundary point of A if and
only if ∀ open set G : x ∈ G ⇒ G ∩ A 6= φ, andG ∩ Ac 6= φ and a point
x ∈ X is a boundary point of X \A if and only if ∀ open set G : x ∈ G⇒
(G ∩X \A) 6= φ⇒ G ∩Ac 6= φ, andG ∩ (X \A)c 6= φ⇒ G ∩A 6= φ. So,
it is clear that they are the same.

Theorem 10. Let (x, τ) be a topological space, A ⊆ X is open if and only if A
contains none of its boundary points.

Proof. We start to prove the direction ⇒. Suppose that A is open, we need
to show A ∩ Bd(A) = φ. Since A is open, A = A0 and A0 ∩ Bd(A) = φ, i.e.,
A ∩Bd(A) = φ.
Now, We prove the direction ⇐. Suppose that A ∩ Bd(A) = φ, we need to
show A is open, i.e., A = A0. It is enough to show A ⊆ A0. Let x ∈ A, then
x /∈ Bd(A) as A ∩ Bd(A) = φ. Also, A ∩ Ext(A) = φ because x ∈ A. But the
sets A0, Bd(A), Ext(A) are disjoint. Thus x ∈ A0 which completes the proof.

Corollary 2. Let (x, τ) be a topological space, A ⊆ X is closed if and only if
A contains all of its of its boundary points.
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10 Cluster points, Accumulation points, limit
points

Definition 19. Let (X, τ) be a topological space, A ⊆ X , a point x ∈ X is
called a cluster point of A (limit point, accumulation point) if and only if every
open set containing x contains points of A other than x, i.e.,

∀G ∈ τ : x ∈ G,G ∩A \ {x} 6= φ.

The set of all cluster points of A is called the derived set of A and is denoted
by A′.

Remark 22. Let (X, τ) be a topological space, A ⊆ X , a point x ∈ X is not a
limit point of A iff ∃G ∈ τ : x ∈ G,G ∩A \ {x} = φ.

Example 41. Let X = {a, b, c, d, e} and τ = {φ,X, {a}, {b, c}, {a, b, c}, {b, c, d, e}
be a topology on X. Consider A = {a, b, d}. Find A′.

� Is a ∈ A′? to answer this question we have to test if all the open sets that
contain (a) contain other points of A other than (a). If we consider the
open set {a}, we have a ∈ {a} but A∩ {a} \ {a} = {a, b, d} ∩ φ = φ. Thus
a /∈ A′.

� Is b ∈ A′? to answer this question we have to test if all the open sets that
contain (b) contain other points of A other than (b). If we consider the
open set {b, c}, we have A∩{b, c}\{b} = {a, b, d}∩{c} = φ. Thus b /∈ A′.

� Is c ∈ A′?If we consider the open set X, Its clear that A ∩X \ {c} 6= φ.
Now, c ∈ {b, c} and A∩{b, c}\{c} = {a, b, d}∩{b} = {b} 6= φ,c ∈ {a, b, c}
A ∩ {a, b, c} \ {c} = {a, b, d} ∩ {a, b} = {a, b} 6= φ, c ∈ {b, c, d, e} and
A ∩ {b, c, d, e} \ {c} = {a, b, d} ∩ {b, d, e} = {b, d} 6= φ. So, ∀G ∈ τ : c ∈
G,G ∩A \ {c} 6= φ. Thus c ∈ A′.
Similarly, we can conclude that d, e ∈ A′. Thus, A′ = {c, d, e}.

Example 42. Consider the topological space (R, τdis) and a subset A ⊆ X.
Describe A′.
Let x ∈ X, we can find an open set G = {x} : {x} ∩ A \ {x} = φ. Thus x /∈ A′
and A′ = φ.

Example 43. Consider the topological space (R, τu) and the set A = (0, 1] ,
then A′ = [0, 1]. The solution (in details ) is discussed during the lecture.
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Example 44. Consider the topological space (R, τu) and the set A = {1, 12 ,
1
3 , . . . }

, then A′ = {0}. The solution (in details ) is discussed during the lecture.

Example 45. Consider the topological space (R, τu) and the set A = Q , then
A′ = R. The solution (in details ) is discussed during the lecture.

Example 46. Consider the topological space (R, τu) and the set A = Z , then
A′ = φ. The solution (in details ) is discussed during the lecture.

Example 47. Consider the topological space (R, τ`) and the set A = (0, 1]∪{2}
, then A′ = [0,∞). The solution (in details ) is discussed during the lecture.

Theorem 11. Let (x, τ) be a topological space, A ⊆ X, B ⊆ X. Then

� φ′ = φ.

� If A ⊂ B, then A′ ⊂ B′.

Proof. Suppose that A ⊆ B, we need to show A′ ⊂ B′. Let x ∈ A′,
then ∀G ∈ τ : x ∈ G,G ∩ A \ {x} 6= φ but from assumption A ⊂ B, so
G ∩B \ {x} 6= φ. Thus x ∈ B′.

� (A ∪B)′ = A′ ∪B′.

Proof. We have A ⊆ A∪B and B ⊆ A∪B,A′ ⊆ (A∪B)′ and B′ ⊆ (A∪B)′.
Thus A′ ∪B′ ⊆ (A ∪B)′*
Now, we need to show (A∪B)′ ⊆ A′∪B′. Let x ∈ (A∪B)′ and x /∈ A′∪B′,
i.e., x /∈ A′ and x /∈ B′, ∃G ∈ τ : x ∈ G ,G ∩ A \ {x} = φ, ∃H ∈ τ : x ∈
H ,H∩B\{x} = φ, ∃G∩H ∈ τ : x ∈ (G∩H) and (G∩H)∩(A∪B)\{x} = φ.
This means that x /∈ (A ∪ B)′ which is a contradiction which completes
the proof

� A′ ∩B′ ⊆ (A ∩B)′.

Theorem 12. Let (x, τ) be a topological space, A ⊆ X. Then
A is closed if and only if A contains all of its cluster points.

Proof. We start to prove the direction ⇒. Suppose that A is closed, we need
to show A′ ⊆ A, i.e., if x ∈ A′, then x ∈ A. Assume x ∈ A′ and x /∈ A, we will
seek for a contradiction. Since x /∈ A, then x ∈ Ac and Ac is open because A
is closed, this means ∃G ∈ τ : x ∈ G ⊆ Ac this implies to G ∩ A = φ. Thus
G ∩A \ {x} = φ, i.e., x /∈ A′ which contradicts our assumption.
Now, we prove the direction ⇐. Suppose that A′ ⊆ A, we need to show A is
closed, i.e., Ac is open. Let x ∈ Ac, then x /∈ A. From assumption we have
A′ ⊆ A, so x /∈ A′, i.e., ∃G ∈ τ : x ∈ G,G ∩ A \ {x} = φ. As x ∈ Ac we have
G ∩ A = φ, i.e., G ⊆ Ac. Thus Ac is open and A is closed which completes the
proof.

31



Corollary 3. If F is a closed subset of any set A, then F ′ ⊂ A.

Proof. Suppose that F ⊂ A and F is closed. Then F ′ ⊂ F ⊂ A.
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Theorem 13. Let (x, τ) be a topological space, A ⊆ X, A = A0 ∪Bd(A).

Theorem 14. Let (x, τ) be a topological space, A ⊆ X, A = A ∪A′.

Theorem 15. Let (X, τ) be a topological space. A ⊂ X. Then x ∈ A is an
isolated point of A if and only if there exists an open G containing x such that
G ∩A = {x}.

Example 48. Consider the topological space (R, τu) and A = (0, 1]∩{2}. Find
the isolated points of A?
The only isolated point of A is {2}.

Example 49. Consider the topological space (R, τu) and A = N. Find the
isolated points of A?
The isolated points of A is N.

Remark 23. � A given point x ∈ X belongs to one and only one of the
following sets Ext(A), A′, and the set of the isolated points of A.

� If τ is smaller, then the point x ∈ X has a better chance to be a cluster
point of A.

� If τ is larger, then the point x ∈ A has a better chance to be an isolated
point of A.

Theorem 16. Let A be a subset of topological space (X, τ). Then the following
statements are equivalent

1. The set A is dense in X.

2. If B is any closed subset of X, and A ⊆ B, then B = X.

3. For each x ∈ X, every open set in X containing x has nonempty inter-
section with A.

4. (AC)0 = φ.

Proof. 1 ⇒ 2, suppose that the set A is dense in X and B is any closed subset
of X and A ⊆ B, we need to show that B = X, It is enough to show X ⊆ B.
Now, from our assumption A ⊆ B, and as we know A ⊆ B. Because A is dense
in X, we have X ⊆ B but B is closed, i.e., B = B. Thus X ⊆ B.
2 ⇒ 3, suppose that B is any closed subset of X, and A ⊆ B, then B = X.
Let x ∈ X and let U ∈ τ s.t x ∈ U . We need to show U ∩ A 6= φ. Assume
the contrary U ∩ A = φ, then A ⊆ U c and U c is closed, from our assumption
we conclude that U c = X, i.e., U = φ but x ∈ U = φ which is a contradiction.
Thus U ∩A 6= φ.
3 ⇒ 4, suppose that x ∈ X, and ∀U ∈ τ, x ∈ U , we have u ∩ A 6= φ. We
need to show (Ac)0 = φ. Assume the contrary (Ac)0 6= φ, then ∃x ∈ (Ac)0,
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i.e., ∃G ⊆ τ : x ∈ G ∈ Ac, this implies to G ∩ A = φ which contradicts our
assumption. Thus (Ac)0 = φ.
4 ⇒ 1, suppose that (AC)0 = φ, we need to show A = X, i.e., A ⊆ X and
X ⊆ A. Assume X * A, i.e., ∃x ∈ X and x /∈ A, then x ∈ (A)c and (A)c

is an open set. We know A ⊆ A, from set theory we have (A)c ⊆ Ac. The
set (A)c is an open set contained in Ac and since (Ac)0 is the largest open set
contained in (Ac), we conclude that (A)c ⊆ (Ac)0 but we have x ∈ (A)c ⊆ (Ac)0,
i.e., (Ac)0 6= φ which is a contradiction, thus X ⊆ A and this completes the
proof.
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11 Bases and Subbases

Definition 20. Let (X, τ) be a topological space. A base or basis for τ is a
collection β of subsets of X such that:

1. Each member of β is also a member of τ .

2. If U ∈ τ and U 6= φ, then U is the union of sets belonging to β.

Remark 24. The elements of β are called basic open sets in X.

Example 50. Let X = {1, 2, 3, 4} and let τ = {φ,X, {1}, {2}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2}}
be a topology on X. The set β = {{1}, {2}, {3, 4}} is a base for τ because all
the elements of β are in τ and each element in τ can be written as union of sets
belonging to β.

Example 51. Consider the topological space (R, τdis), the set β = {{x} : x ∈ R}
is a base for τdis.

Example 52. Let X = {a, b, c} and let τ = {φ,X, {a}, {b}, {a, b}} be a topology
on X. Then the only bases for τ are

� β1 = τ.

� β2 = {X, {a}, {b}}.

� β3 = {X, {a}, {b}, {a, b}}.

Definition 21. Two collections β1 and β2 of subsets of X are equivalent bases
if there exists a topology τ on X such that β1 and β2 are both bases for τ .

Remark 25. β1, β2, β3 in Example 52 are equivalent bases for τ .

Remark 26. � Every topology is a base for itself.

� φ =
⋃
i=φ

Bi ∈ β.

� There are more than one base for a topology.

� A base for a topology need not to be a topology on X.

Theorem 17. Let (X, τ)be a topological space and β is a base for τ . Then
U ⊆ X is open if and only if ∀x ∈ U,∃B ∈ β s.t x ∈ B ⊆ U .

Proof. We start to prove the direction ⇒. Suppose that U ⊆ X is open and
let x ∈ U . Because β is a base for τ , we can write U as union of elements of
β, i.e., U =

⋃
α∈4
Bα∈β

Bα. This means there exists α0 ∈ 4 s.t x ∈ Bα0
∈ β and

Bα0
⊆

⋃
α∈4
Bα∈β

Bα = U .
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Now, we prove the direction ⇐. Suppose that U ⊆ X and ∀x ∈ U,∃B ∈ β s.t
x ∈ B ⊆ U , we need to show U is open. We know that β ⊆ τ , i.e., B ∈ τ . Thus
U is open which completes the proof.

Theorem 18. For a space (X, τ), a collection β ⊆ τ is a base for τ if and only
if ∀U ∈ τ and ∀x ∈ U ∃B ∈ β : x ∈ B ⊆ U.

Example 53. Consider the topological space (R, τu) and Let β = {(a, b) :
a, b ∈ R, a < b}. Then by Theorem 18 β is a base for the usual topology because
∀U ∈ τ,∀x ∈ U,∃(a, b) ∈ β : x ∈ (a, b) ⊆ U .

11.1 Base of Subspace

Theorem 19. Let (X, τ) be a topological space and β is a base for τ . If A ⊆ X,
then βα = {B ∩A : B ∈ β} is a base for the subspace topology τα on A.

Proof. The elements of βα has the form B ∩ A and B ∈ β ⊆ τ . Thus βα ⊆ τα.
Now, Let U ∈ τα and x ∈ U , U = G ∩ A for some G ∈ τ and x ∈ G ∩ A,i.e.,
x ∈ G and x ∈ A,but β is basis for τ so by Theorem 18 ∃B0 ∈ β : x ∈ B0 ⊆ G
and x ∈ A, x ∈ B0 ∩ A ⊆ G ∩ A. Hence B0 ∩ A ∈ βα, by Theorem 18 we
conclude that βα is a basis for τα.

Example 54. Let X = {a, b, c, d} be a set and τ = {φ,X, {a}, {b, c}, {a, b, c}}
be a topology on X. The sub-collection β = {X, {a}, {b, c}} form a base for τ .
Now, If A = {b, c, d} find

� τα = {φ,A, {b, c}}.

� βα = {A, {b, c}, φ}.

Question How we can know if a collection of subsets form a base for some
topology? to answer this question, consider the following example

Example 55. Let X = {a, b, c, d} be a set and β = {{a}, {a, b}, {b, c}}is a
collection of subsets of X. Can β be a base for some topology. Note that X can
not expressed as union of elements of β. Also, as the elements of β are open in
τ , then their intersection must be in τ , i.e., {b} ∈ τ but it can not expressed as
a union of elements in β.

Theorem 20. Let β be a collection of subsets of nonempty set X. Then β is a
base for some topology on X if and only if the following two conditions hold

1. ∀x ∈ X, ∃B ∈ β s.th x ∈ B.

2. If B1, B2 ∈ β and if x ∈ B1 ∩B2, then ∃B3 ∈ β s.th x ∈ B3 ⊆ B1 ∩B2.

Example 56. Let X = {a, b, c, d} and β = {{a, b}, {b, c, d}}. Does β a base for
a topology on X? It is clear that condition 2 of Theorem 19 doesn’t hold since
{a, b} ∩ {b, c, d} = {b} and there is no B3 ∈ β : {b} ∈ B3 ⊆ B1 ∩ B2. So, β is
not a base for a topology on X.
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11.2 Exercises

1. State if the following statements are True or False, justify your answer

� Every topology is a base for itself

� LetX = {1, 2, 3}, the set β = {1, 3}, {2, 3} is a base for some topology
on X.
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Example 57. Let x = {a, b, c} and β = {{a}, {b}, {c}}.

� Show that β is a base for some topology on X. We need to verify conditions
(1) (2) of Theorem 19 (do it as an exercise).

� Find τ(β) = {{a}, {b}, {c}, φ,X}.

Theorem 21. Let (X, τ1), (X, τ2) be topological spaces with bases β1, β2 re-
spectively. Then

τ1 ⊆ τ2 ⇔ ∀B1 ∈ β1, x ∈ β1,∃B2 ∈ β2 : x ∈ B2 ⊆ B1

Proof. ⇒ Suppose that τ1 ⊆ τ2, let B1 ∈ β1, x ∈ B1, B1 ∈ τ1, since τ1 ⊆ τ2
B1 ∈ τ2,by Theorem 18 we have ∀x ∈ B1 : x ∈ B1,∃B2 ∈ β2 : x ∈ B2 ⊆ B1.
Conversely, ⇐ suppose that ∀B1 ∈ β1, x ∈ B, ∃B2 ∈ β2 : x ∈ B2 ⊆ B1, let U ∈
τ1, then ∃B1 ∈ β1 : x ∈ B1 ⊆ U , from assumption ∃B2 ∈ β2 : x ∈ B2 ⊆ B1 ⊆ U .
Thus U is open in τ2 which completes the proof.

12 Finite product of Topological Space

Recall that

� If X1×X2× · · ·×Xn are sets, then the Cartesian product is the set of all
n- tuples of X1 ×X2 × . . . Xn = {(x1, x2, . . . , xn) : xi ∈ Xi}.

� If A ⊂ C,B ⊂ D, then A×B ⊆ C ×D.

� X × φ = φ×X = φ.

� A×B = φ if and only if A = φ or B = φ.

� X × (Y ∩ Z) = (X × Y ) ∩ (X × Z).

� X × (Y ∪ Z) = (X × Y ) ∪ (X × Z).

� (X × Y ) ∩ (Z ∩W ) = (X ∩ Z)× (Y ∩W ).

� (X × Y ) ∪ (Z ∩W ) ⊆ (X ∪ Z)× (Y ∪W ).

Now, if τi is a topology on Xi for i = 1, 2, . . . , n, we will topologize the product
set X1 ×X2 × · · · ×Xn.

Theorem 22. Let (xi, τi), i = 1, 2, . . . , n be a finite collection of topological
spaces and let X = X1, X2, . . . , Xn be the set of Cartesian product. If β is the
collection of all sets of X of the form U1 ×U2 × . . . Un where Ui ∈ τi, then β is
a base for a topology on X.

Definition 22. The topology τ(β) generated by β and having β as a base is
called the product topology on X = X1 ×X2 × · · · ×Xn. The space consisting
of the set X together with the product topology is called the topological product.
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Remark 27. � If (X, τp) is a product space of spaces (Xk, τk), k = 1, 2, . . . , n,
then u ∈ τp if and only if ∀x ∈ u,∃B ∈ β : x ∈ B ⊆ u.

� In the plane R2, an open rectangle is a set of the form (a, b)× (c, d). Since
(a, b) and (c, d) are open in R, the open rectangles belong to the base β of
R2.

� In the plane R2, the open sets are not necessary only open rectangles as
shown in the figure below.
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13 Continuous Function

Definition 23. Let f be a function from R→ R. The function f is continuous
at x = a ∈ R if for any ε > 0, there exists a real number δ > 0 s.t

|x− a| < δ ⇒ |f(x)− f(a)| < ε,

this is equivalent to

x ∈ (−δ + a, δ + a)⇒ f(c) ∈ (f(a)− ε, f(a) + ε),

f(−δ + a, δ + a) ⊆ (f(a)− ε, f(a) + ε)

Definition 24. Let (X, τx) and (Y, τy) be topological spaces and the function
f : X → Y . The function f is continuous at the point x0 ∈ X if and only if for
any open set V containing f(x0), there exists an open set U ⊂ X containing x0
such that f(U) ⊆ V , i.e.,

∀V ∈ τy : f(x0) ∈ V,∃U ∈ τx s.t f(U) ⊆ V,U ⊆ f−1(V ).

Remark 28. � The Definition 24 agree with epsilon-delta definition.

� The smaller topology on Y and the larger topology on X, the better chance
for the function f to be continuous.

� A given function may be continuous for certain topologies on X and Y but
not continuous if different topologies are defined on theses sets.

Example 58. Let f : X → Y be a function given by f(x) = x, X,Y = R with
usual topology. Show that f is continuous at each x0 ∈ X.
Let x0 ∈ X and V ∈ τy : f(x0) ∈ V , f(x0) = x0 ∈ V , choose U = V and
f(U) = U ⊆ V. Thus f is continuous at each x0 ∈ X.

Example 59. Let f : X → Y be a function given by f(x) = x, X,Y = R with
cofinite and usual topology respectively. Show that f is discontinuous at x0 = 1.
We have f(1) = 1, there exists V = (0, 2) ∈ τy : f(1) = 1 ∈ V . Any U open in
τx and 1 ∈ U has the form R \ {finite set} and f(U) = U . Finally f(U) 6⊆ V .
Thus f is discontinuous at x = 1.

Discontinuity Criterion One The function f : (X, τx)→ (Y, τy) is
discontinuous at x = x0 if and only if ∃V ∈ τy : f(x0) ∈ V and

∀U ∈ τx, x0 ∈ U, f(U) 6⊆ V.

Example 60. Let f : X → Y be a function given by f(x) = x, X,Y = R with
usual and discrete topology respectively. Show that f is discontinuous at any
x0 ∈ X.
We have f(x0) = x0, there exists V = {x0} ∈ τdis : f(x0) = x0 ∈ V . Any U
open in τx and x0 ∈ U has the form (x0 − ε, x0 + ε) and f(U) = U . Finally
f(U) = (x0 − ε, x0 + ε) 6⊆ V = {x0}. Thus f is discontinuous at x = x0.
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Example 61. Let f : X → Y be a function given by f(x) = x, X,Y = R
with discrete and usual topology respectively. Show that f is continuous at any
x0 ∈ X.
Let x0 ∈ X and V ∈ τy : f(x0) ∈ V , f(x0) = x0 ∈ V , choose U = {x0} ∈
τx andx0 ∈ U and f(U) = U = {x0} ⊆ V. Thus f is continuous at each x0 ∈ X.

Theorem 23. Let f : X → Y be a function from one topological space to
another. Then the following conditions are equivalent.

1. The function f is continuous.

2. For each open set V ⊆ Y , f−1(V ) is open in X.

3. For each closed set M ⊆ Y , f−1(M) is closed in X.

Proof. First, we will prove the direction 1⇒ 2. Suppose that the function f is
continuous, and let V ⊆ Y be an open set. We need to show f−1(V ) is open in
τx, i.e., ∀x ∈ f−1(V ),∃H ∈ τx : x ∈ H ⊆ f−1(V ). Let x ∈ f−1(V ), this means
f(x) ∈ V . Because f is continuous there exists U ∈ τx such that x ∈ U and
f(U) ⊆ V , U ⊆ f−1(V ). Thus f−1(V ) is an open set.
Now, we will prove the direction 2⇒ 1. Suppose that for each open set V ⊆ Y ,
f−1(V ) is open in X. We need to show f is continuous. Let V be any open set in
Y such that f(x) ∈ V , from assumption f−1(V ) is open in X and x ∈ f−1(V ).
Choose U = f−1(V ), then x ∈ U = f−1(V ) and f(U) = f(f−1(V )) ⊆ V . Thus
f is continuous.

Example 62. Let X = {a, b, c} and we define τx = {φ,X, {a}, {b, c}} to be a
topology on X. Let Y = {x, y, z} and we define τy = {φ, Y, {y}, {z}{y, z}} to be
a topology on Y . Prove or disprove if the function f = {(a, x), (b, z), (c, z)} is
continuous.
We want to show if the pre image of any open set in Y is open in X.
f−1(φ) = φ which is open in X.
f−1(Y ) = X which is open in X.
f−1({y}) = φ which is open in X.
f−1({z}) = {b, c} which is open in X.
f−1({y, z}) = {b, c} which is open in X.
Thus f is continuous.

Example 63. Let f : (X, τdis) → (Y, τ) be a function where τ is any topology
on Y . Prove that f is continuous.
Let V be any open set in τ , f−1(V ) ⊆ X, f−1(V ) ⊆ P(x), f−1(V ) ∈ τdis. Thus
f is continuous.

Example 64. Let f : (X, τ1) → (Y, τ2) be a function where f(x) = a for all
x ∈ X. Prove that f is continuous.
Let V be any open set in τ , then

f−1(V ) =

{
X if a ∈ V
φ if a /∈ V

.
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In both cases f−1(V ) is open in τ1.

Discontinuity Criterion Two The function f : (X, τ1)→ (Y, τ2) is
discontinuous if and only if there is some open set V open in τ2 s.t f−1(V ) is

not open in X.

Example 65. Let f : (R, τu)→ (R, τu)
f(x) = x2.

1. Find the inverse inverse image of the following set

� [0,∞) = R \ {0}
� (0,∞) = R
� (−3,∞) = R
� (4,∞) = (−∞, 2) ∪ ()2,∞)

� [0, 4) = (−2, 2)

2. Show that f is continuous on R.
Let V = (a, b) be any open interval in Y = R containing f(x), then

f−1(V ) =


φ if a < 0, b < 0

(−
√
b,
√
b) if a < 0, b > 0

(−
√
b,−
√
a) ∪ (

√
a,
√
b) if a > 0, b > 0

.

In all cases f−1(V ) is open in τu. Thus f is continuous on R,

Example 66. Let f : (X, τu)→ (Y, τu) be a function where X = [0, 7], Y = R,
and

f(x) =

{
3x if 0 ≤ x ≤ 4

15 if 4 < x ≤ 7
.

Show that f is not continuous at x = 4.
Let V = (11, 13) be an open set in Y such that f(4) = 12 ∈ V , for any U
open set in X containing 4, then U contains points x > 4 and f(U) = 15,
f(U) 6⊆ (11, 13).

Example 67. Let f : (R, τu) → (R, τ`) be a function where f(x) = |x|, show
that f is continuous.
Let V be any open set in (R, τ`), then V has the one of the following forms
φ,R, (−∞, r). Now f−1(φ) = φ, f−1(R) = R, f−1(−∞, r) = (−r, r). In all
cases f−1(v) is open in τu.

Example 68. Let f : (R, τu) → (R, τr) be a function where f(x) = |x|, show
that f is continuous.
HW.
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13.1 Composition of Continuous function

Theorem 24. If f : X → Y and g : Y → Z are both continuous functions,
then the composition g ◦ f : X → Z is continuous.

Proof. Let V be an open set in Z, g−1(V ) is open set in Y since g is continuous,
f−1(g−1(V )) is open set in X since f is continuous. Thus (g ◦ f)−1(V ) is an
open set in X, i.e., g ◦ f is continuous.

13.2 Exercises

1. State two conditions on a collection of subsets of a nonempty set X to be
a base for some topology on X.

2. Define the product topology on the topological spaces (X1, τ1), (X2, τ2), . . . , (Xn, τn).

3. Let f : (X, τx) → (Y, τy) be a function. Give three equivalent conditions
such that the function f to be continuous.

4. Let f : (X, τx) → (Y, τy) be a function. Give two equivalent conditions
such that the function f to be discontinuous.

14 Open Functions and Homomorphisim

14.1 Open and Closed Functions

Definition 25. Let (X, τx) and (Y, τy) be a topological spaces and let
f : X → Y be function. Then

� f is open function if and only for any open set in X, f(G) is open
in Y .

� f is closed function if and only for any closed set in X, f(G) is closed
in Y .

Remark 29. The function f may be continuous and not open, or contin-
uous and open but not closed, or continuous, open and closed.

Example 69. Let X = {a, b, c} and τx = {φ,X, {a}, {b, c}} be a topology
defined on X. X = {x, y, z} and τy = {φ, Y, {y}} be a topology defined on
Y . Define the function f : X → Y as follows: f(a) = x, f(b) = y, f(c) =
y.

� Show that f is continuous.
f−1(φ) = φ, f−1(Y ) = X, f−1({y}) = {b, c}so, thr inverse of any
open set in Y is open in X.

� Show that f is not open.
f({a}) = {x}so, there exists an open set in X such that its image is
not open in Y .
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� Show that f is not closed.
f({a}) = {x}so, there exists a closed set in X such that its image is
not closed in Y .

Example 70. Let f : (R, τu)→ (R, τdis) be a function such that f(x) = 5.
We can show that f is open, closed and continuous function (verify as
HW).

Theorem 25. Let f : (X, τ1)→ (Y, τ2) be a function. Then

f is open ⇔ f(A0) ⊆ (f(A))0, ∀A ⊆ X

Proof. ⇒ Suppose that f is open and let A ⊆ X, A0 ⊆ A, but A0 is an
open set and f is open, so f(A0) is open in Y and f(A0) ⊆ f(A), (f(A0))0 ⊆
(f(A))0 since (f(A0))0 = f(A0), this equivalent to (f(A0) ⊆ (f(A))0.
Conversely⇐ Suppose that (f(A0) ⊆ (f(A))0, we want to show f is open.
Let G be any open in X, then G = G0. f(G) = f(G0) ⊆ (f(G))0 ⊆ f(G),
f(G) = (f(G))0, i.e., f(G) is open in Y and thus F is an open function
which completes the proof.

14.2 Exercises

(a) Give an example for a function f which is continuous, closed but not
open.

(b) Let f : X → Y , g : Y → Z be two functions. Prove that if f and g
are open, then g ◦ f is open.
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Lecture 17

14.3 Homeomorphism

Definition 26. Let f : X → Y be a bijection function from the space X to the
space Y . If f is open and continuous, then f is called a homeomorphism. If
f is a homeomorphism from X to Y , then the space X and Y are said to be
homeomorphic denoted by X ∼= Y.

Example 71. Let f : (R, τu) → (R, τdis) be a function such that f(x) = 5.
Then f is not homeomorphism, since it is not onto.

Theorem 26. Let f : X → Y be bijective. Then the following are equivalent:

1. f is homeomorphism.

2. f and f−1 : Y → X are both continuous.

3. f is continuous and closed.

Proof. 1 ⇒ 2, suppose that f : X → Y is a bijective and homeomorphism. It
cleae that f is continuous, we need to show that it is open. Let V be an open
set in X, then (f−1)−1(V ) = f(V ) which is open in Y because f is an open
function.
2 ⇒ 3, suppose that f and f−1 : Y → X are both continuous, we need to show
f is closed. Let U be a closed set in X, (f−1)−1(U) = f(U) is closed in Y which
completes the proof. 2 ⇒ 3.
do it as exercise.

Definition 27. A property of a space X is called a topological property if and
only if every space Y homemorphic to X also has the same property.

15 Separation Axioms

Definition 28. Let (X, τ) be a topological space.

1. A space X is a T0 space if and only if for any x 6= y in X, there exists
an open set G such that x ∈ G and y /∈ G or there exists open set H such
that y ∈ H or x /∈ H.

2. A space X is a T1 space if and only if for any x 6= y in X, there exists an
open set G such that x ∈ G and y /∈ G and there exists open set H such
that y ∈ H or x /∈ H.

3. A space X is a T2 space if and only if for any x 6= y in X, there exist two
disjoint open sets G, H such that x ∈ G and y ∈ H.

Remark 30. � If X is a T2 space, then sometines X is called Hausdorf
Space.
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� The implication T2 ⇒ T1 ⇒ T0 is true, the converse is not true as we will
see in the following examples.

Example 72. Let X = {a, b} and τ = {φ,X, {a}} be a topology on X.

� Show that X is T0 space.
We have a 6= b, we need to show there exists an open set G such that a ∈ G
and b /∈ G. Choose G = {a}.

� Show that X is not T1 space.
The only open set that contains b is X and it contains a, so X is not T1
space.

Example 73. Consider the topological space (R, τ`).

� Show that (R, τ`) is a T0 space.
Let x, y ∈ R and x 6= y we need to show there exists an open set G such that
x ∈ G and y /∈ G. Suppose x < y, let r = y−x

2 . Choose G = (−∞, x+ r),
then x ∈ G and y /∈ G. Thus (R, τ`) is a T0 space.

� Show that X is not T1 space.
Let x, y ∈ R and x 6= y Let G be an open set that contains y, then G =
(−∞, k) k > y or G = R. In both cases x ∈ G, so (R, τ`) is not T1 space.

Remark 31. Example 73 shows that the implication T0 ⇒ T1 is not true.

Example 74. Let X = {a, b, c} and τ = {φ,X, {a}} be a topology on X. Show
that X is not T0 space.
We have b 6= c, the only open open set that contains b is X and it contains c.
Also, the only open open set that contains c is X and it contains b. Thus X is
not T0 space.

Example 75. Consider the topological space (R, τcof ).

� Show that (R, τcof ) is a T1 space.
Let x, y ∈ R and x 6= y we need to show there exists an open set G such
that x ∈ G and y /∈ G and an open set H such that y ∈ H and x /∈ H, let
G = R \ {y} and H = R \ {x}. It is clear that x ∈ G and y /∈ G, y ∈ H
and x /∈ H, . Thus (R, τcof ) is a T1 space.

� Show that (R, τcof ) is not a T2 space.
For any open sets G such that x ∈ G and y /∈ G and H such that y ∈ H
and x /∈ H, G ∩H 6= φ. Thus (R, τcof ) is not a T2 space.

Example 76. Show that (R, τu) is a T2 space.
Let x, y ∈ R and x 6= y, let r = y−x

2 , consider the open sets G = (x− r, x+ r),
H = (y− r, y+ r), it is clear that G∩H = φ and x ∈ G and y /∈ G, y ∈ H and
x /∈ H. Thus (R, τu) is a T2 space.

46



15.1 Some Properties of T1 Space

Theorem 27. X is T1 space if and only if every singlton set is closed in X.

Proof. Suppose that X is T1 space, we want to prove that foe any x ∈ X,
{x} is closed. To prove {x} is closed, we need to show X \ {x} is open, i.e.,
∀y ∈ X \ {x},∃G ∈ τ : y ∈ G ⊆ X \ {x}. Let y ∈ X \ {x}, then x 6= y. Since
X is T1 space, there exists two open sets G,H s.t x ∈ G and y /∈ G, y ∈ H and
x /∈ H and G ⊆ X \ {x}. Thus, the set X \ {x}is open in X, i.e., {x} is closed
in X.
Conversely, Suppose that {x} is closed in X, we want to show X is T1 space.
Let x, y ∈ X and x 6= y, then {x}, {y} are closed in X. Let G = X \ {x},
H = X \ {y} are open in X and y ∈ G and x /∈ G, x ∈ H and y /∈ H. Thus X
is T1 space which completes the proof.

Corollary 4. Let X be a T1 space then every finite set is closed in X.

Proof. Let A = {x1, x2, . . . , xn} be a finite set, now by Theorem 27 we conclude
that A = {x1} ∪ {x2} ∪ . . . {xn} is closed since it is a finite union of closed
sets.

Theorem 28. The topological space is (X, τ) is a T1 space if and only if τ
contains the cofinite topology on X, i.e., τcof ⊆ τ .

Proof. Suppose that (X, τ) is a T1, Let G ∈ τcof , G = X \ {finite set}, Gc =
{finite set}, since (X, τ) is a T1 and by Theorem 27 we conclude Gc is closed
set (X, τ), i.e., G is open in (X, τ), G ∈ τ .
Conversely, suppose that τcof ⊆ τ , let x, y ∈ X and x 6= y, let G = X \ {x},
H = X \ {y} are open in τcof ⊆ τ , it is clear that y ∈ G and x /∈ G, x ∈ H and
y /∈ H. Thus (X, τ) is a T1 space.

Theorem 29. Every subspace of T1 space is T1 space.

Proof. Suppose that (X, τ) is a T1 space. For any A ⊆ X, define τα on A to be
τα = {A ∩ G : G ∈ τ}, we need to show (A, τα) is T1 space. let x, y ∈ A and
x 6= y, then x, y ∈ X and X is T1 space, then ∃G,H ∈ τ : x ∈ G andy 6 inG and
x /∈ H, y ∈ H, x ∈ G∩A, y /∈ G∩A and x /∈ H∩A, y ∈ G∩A. Since G∩A ∈ τα,
we conclude that every subspace of T1 space is T1 space which completes the
proof.

Remark 32. � Every subspace of T0 space is T0 space.

� Every subspace of T2 space is T2 space.(try to prove)
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15.2 Topological Property

Definition 29. A property of a space is called a topological property if and only
if every space Y homeomorphic to X has the same property.

Example 77. Show that T0-property is a topological property.

Proof. Let f : X → Y be a homeomorphism and suppose that X is a T0-
space. We need to show Y is T0 space. Let y1, y2 ∈ Y, y1 6= y2, since f is
one to one and onto ∃x1, x2 ∈ X : x1 6= x2 and f(x1) = y1, f(x2) = y2.
Because X is T0 space, ∃ open set G : x1 ∈ G and x2 /∈ G or ∃ open set
H : x1 /∈ H and x2 ∈ H. f(G), f(H) are open in Y because f is an open
function and f(x1) ∈ f(G), f(x2) /∈ f(G) or f(x1) /∈ f(H), f(x2) ∈ f(H) i.e.,
y1 ∈ f(G), y2 /∈ f(G) or y1 /∈ f(H), y2 ∈ f(H). This means that there an open
set in Y containing y1 but not y2 and another open set in Y containing y2 but
not y1. Thus Y is T0 space.

Remark 33. In the same way as example 77, we can show that T1, T2 are
topological properties.

Example 78. Let (X, τ)be a Hausdorff space. If τ1 is a topology for X such
that τ ⊆ τ1, then prove that (X, τ1) is also Hausdorff.

Proof. Let (X, τ) be a Hausdorff space and τ ⊆ τ1. Let x, y ∈ X and x 6= y.
Since X is T2- space ∃G ∈ τ : x ∈ G and y /∈ G and ∃H ∈ τ : x /∈ H and y ∈ H
and G ∪ H = φ. Since τ ⊆ τ1, we have G,H ∈ τ1, i.e., (X, τ1) is a Hausdorff
space.

15.3 Normal and Regular Spaces

Definition 30. The space X is called a regular space if and only if for each
closed subset F ⊆ X and for each x /∈ F , there exists two disjoint open sets U
and V such that x ∈ U and F ⊂ V . A regular T1- space is called a T3- space.

Definition 31. The space X is called a normal space if and only if for each
pair of disjoint closed subsets F1 and F2 of X, there exists two disjoint open
sets U and V such that F1 ⊆ U and F2 ⊆ V . A normal T1- space is called a
T4- space.

Example 79. Let X = {a, b, c} with the topology τ = {φ,X, {a}, {a, b}}.

� Show X is normal.
The closed sets are {φ,X, {b, c}, {c}}. Since there is no disjoint closed sets,
X is normal.

� Show X is not T2.
Take b 6= c, the only set contains c is X and intersects with any open set
contains b.
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� Show that X is not regular.
Consider the closed set {b, c} and a /∈ {b, c}, the only closed set contains
a is X and it intersects with the set {b, c}.

Theorem 30. Every T3 space is T2- space.

Proof. Let x, y ∈ X, x 6= y. since X is T1- space, the set {y} is closed in X.
Clearly x /∈ {y}, because X is regular space there exists disjoint open sets U
and V : x ∈ U, {y} ⊆ V , x ∈ U, y ∈ V . Thus X is T2-space.

Theorem 31. Every T4 space is T3- space.

Proof. Let x ∈ X, F is closed set, x /∈ F . since X is T1- space, the set {x} is
closed in X. Clearly the sets F, {x} are disjoint closed set. Because X is normal
space there exists disjoint open sets U and V : {x} ⊆ U,F ⊆ V , x ∈ U,F ⊆ V .
Thus X is a regular T1-space, i.e., X is T3-space.

Remark 34. The implication T4 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0 is true.

15.4 First Axiom of Countability

Definition 32. Let (X, τ) be a topological space and x ∈ X. A family βx of
open sets which contains x is called a local base at x if ∀u ∈ τ : x ∈ U,∃V ∈
βx : x ∈ V ⊆ U .

Example 80. Let (X, τ) be a topological space and x ∈ X. The collection
βx = {V ∈ τ : x ∈ V } is a local base at x.(try to verify)

Example 81. Let X = {a, b, c, d}, and let τ = {φ,X, {a}, {a, b}, {a, c}, {a, b, c}}
be a topology on X. Then

� βa = {X, {a}, {a, b}, {a, c}, {a, b, c}} is a local base at a. (Verify).

� β′a = {{a}} is a local base at a.

� βb = {X, {a, b}, {a, b, c}} is a local base at b.

� β′b = {{a, b}} is a local base at b.

� Try to find two local bases for c, d.

Definition 33. First Axiom of countability A space X is called first count-
able if ∀x ∈ X, there exists a countable local base at x.

Example 82. The following are examples of first countable space.

� Any finite topological space.

� Any finite topology on any set.

� Any discrete space, consider the set βx = {{x}} is a countable local base.
(verify).
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� The space (R, τu). To verify this space is a first countable space consider
the set βx = {(x− r, x+ r) : r ∈ Q+} is a countable local base. Clearly the
elements of βx are open sets and the cardinality of βx is the same as the
cardinality of Q+. Now let U ∈ τ and x ∈ U from the definition of open
sets in τu, there exists (a, b) : x ∈ (a, b) ⊆ U . Let ε = min{|x−a|, |x− b|}.
There exists r ∈ Q+ such that 0 < r < ε and x ∈ (x − r, x + r) ⊆ (a, b).
Thus the set βx = {(x− r, x+ r) : r ∈ Q+} is a countable local base, i.e.,
the space (R, τu) is first countable space.

Theorem 32. Let X be a first countable space and let x ∈ X. Then there exists
a countable local base {Un : n ∈ N} at x such that

1. Un+1 ⊆ Un,∀n ∈ N.

2. If X is also a T1-space, then
⋂
n∈N

= {x}.

Proof. Suppose that X is a first countable space. For all x ∈ X, X has a
countable local base βx = {v1, v2, . . . , vn, . . . }, i.e., ∀G ∈ τ : x ∈ G,∃v ∈ βx :
x ∈ v ⊆ G. Now, Let U1 = v1, U2 = v1 ∩ v2, U3 = v1 ∩ v2 ∩ v3, . . . , we will show
that the set {U1, U2, . . . } is countable local base and Un+1 ⊆ Un,∀n ∈ N.

� x ∈ vi ⇒ x ∈ Ui.

� Ui, i ∈ N is an open set since its intersection of open sets. Note that
U1 ⊆ v1, U2 ⊆ v2, . . .

� Let x ∈ X, since βx is a local base, we have ∀H ∈ τ,∃vi ∈ βx : x ∈ vi ⊆ H.
So, x ∈ Ui ⊆ vi ⊆ H.

Thus, the set {Un : n ∈ N} is local base and a countable set. Also, U2 ⊆ U1,
U3 ⊆ U2, . . . which completes the proof of 1.
Now to prove 2, Suppose that X is a T1 space.

Claim
∞⋂
n∈N

Un = {x}.

We proved in 1 that the collection {Un : n ∈ N} is a local base, i.e., ∀x ∈
X,x ∈ Ui,∀i ∈ N so, x ∈

∞⋂
i=1

Ui, {x} ⊆
∞⋂
i=1

Ui, we need to show
∞⋂
i=1

Ui ⊆ {x} by

contrapositive. Let y /∈ {x}, y 6= x. Since X is T1 space, ∃G,H ∈ τ s.th x ∈ G
and y /∈ G, x /∈ H, y ∈ H. Because the set {Un : n ∈ N} is a countable local
base we have for some m ∈ N ∃Um ∈ {Un : n ∈ N} s.th x ∈ Um ⊆ G because

y /∈ G, this imply to y /∈ Um for some m ∈ N, y /∈
∞⋂
i=1

Ui. This proves that

∞⋂
i=1

Ui ⊆ {x} which completes the proof.

15.5 Second Axiom of Countability

Definition 34. A space (X, τ) is called second countable (or satisfies the second
axiom of countability) if and only if there is a countable base for τ .
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Example 83. Let X = {a, b, c, d} and τ = {φ,X, {a}, {a, b}, {a, c}, {a, b, c}} be
a topology on X. Then βa = {{a}} is a local base but not a base.

Theorem 33. Every second countable space is a first countable space.

Example 84. 1. Any finite topological space is second countable.

2. Any finite topology on any set is second countable.

3. Any discrete space is second countable if and only if X is countable.

4. The space (R, τu) is second countable. To verify this consider β = {(r, s) :
r, s ∈ Q, }, |β| = |Q × Q| so, it is countable and contains open sets. Let
u ∈ τ, x ∈ u, then ∃(a, b) : x ∈ (a, b) ⊆ u. We know that between any
two real numbers, there exists a rational number, thus ∃(r, s) : r, s ∈ Q,
x ∈ (r, s) ⊆ (a, b) ⊆ u. Hence β is a countable base.

Remark 35. Every second countable space is a first countable space but the
converse is not true, consider (R, τdis) is a first countable but not a second
countable space.

Theorem 34. Any subspace of second countable space is second countable.

Theorem 35. The property of being second countable is a topological property.

Definition 35. A space X is called separable if and only if there exists a count-
able subset of X which is dense in X.

Example 85. The space (R, τu) is a separable space, the countable dense subset
is Q.

Theorem 36. Every second countable space is separable.

Proof. Let X be a second countable space, then there exists a countable base
β = {B1, B2, . . . }, pick xi ∈ Bi, i ∈ N
claim the set D = {xi : i ∈ N} is a countable dense set. It is clear that |D| ≤ |β|.
To show D is dense, it is enough to show that ∀u ∈ τ : x ∈ u, u ∩ A 6= φ, see
Theorem (15-3). Let u be an open set s.th x ∈ u, ∃Bm ∈ β : xm ∈ Bm ⊆ u,m ∈
N, xm ∈ D, u ∩D 6= φ. Thus D is a countable dense set which completes the
proof.

16 compact Space

Definition 36. Consider the topological space (X, τ). The set G = {Gα : α ∈
4} ⊆ τ is an open cover of X if X =

⋃
α∈4

Gα.

Example 86. Consider the space (R, τu). The following are open covers of R

� G = {(−n, n) : n ∈ N} since R =
⋃
n∈N

(−n, n).
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� H = {(−∞, n) : n ∈ N} since R =
⋃
n∈N

(−∞, n).

� K = {(n, n+ 2) : n ∈ Z} since R =
⋃
n∈Z

(n, n+ 2).

Definition 37. Let A ⊆ X. The set H = {Hα : α ∈ 4} ⊆ τ is an open cover
of A if A ⊆

⋃
α∈β

Hα.

Definition 38. A space (X, τ) is called a compact space if and only if every
open cover of X has a finite subcover.

Remark 36. � A ⊆ X is compact on X if and only if every open cover of
A has a finite subcover.

� The space (X, τ) is not compact if and only if there exists open cover of
X has no finite subcover.

Example 87. Show that (R, τu) is not compact.
Let G = {(−n, n) : n ∈ N}, then G is an open cover of R. Suppose that G has
a finite subcover say (−n1, n1), (−n2, n2), . . . , (−nk, nk), then R = (−n1, n1) ∪
(−n2, n2) ∪ . . . , (−nk, nk) = (−nr, nr) where nr = max{n1, n2, . . . , nk} which
is impossible. Thus G has no finite subcover and (R, τu) is not compact.

Example 88. Show that (R, τcof ) is compact, where X be an infinite set.
Let G = {Gα : α ∈ 4} ⊆ τcof , be any open cover of X. Choose α0 ∈ 4,
Gα0 = X \ {x1, x2, . . . , xn}, choose αi ∈ 4 : xi ∈ Gαi , i = 1, . . . , n. Now
X = Gα0

∪Gα1
∪Gα2

. . . Gαn . So, every open cover of X has a finite subcover.

Example 89. Let (X, τ) be a topological space, prove that any finite subset of
X is compact.

Proof. Let A ⊂ X, and A is a finite set. Let G = {Gα : α ∈ 4} ⊆ τ be any open
cover of A = {x1, x2, . . . , xn}, i.e., A ⊆

⋃
α∈4

Gα. Choose αi ∈ 4 : xi ∈ Gαi , i =

1, . . . , n, A ⊆
n⋃
i=1

Gαi , G has a finite subcover and hence A is compact.

Example 90. Show that A = (0, 1) is not compact in (R, τu).
Let G = {( 1

n+1 , 1) : n ∈ N} be an open cover of A. Suppose that G has a finite

subcover say ( 1
n1+1 , 1), ( 1

n2+1 , 1), . . . , ( 1
nk+1 , 1), then A ⊆ ( 1

n1+1 , 1)∪ ( 1
n2+1 , 1)∪

· · · ∪ ( 1
nk+1 , 1) = ( 1

n0+1 , 1) where n0 = max{n1, n2, . . . , nk} which is impossible,

thus G has no finite subcover and hence (0, 1) is not compact.

Example 91. 1. Show that (R, τ`) is not compact.
Let G = {(−∞, n) : n ∈ N}, then G is an open cover of R. Sup-
pose that G has a finite subcover say (−∞, n1), (−∞, n2), . . . , (−∞, nk),
then R = (−∞, n1) ∪ (−∞, n2) ∪ . . . , (−∞, nk) = (−∞, nr) where nr =
max{n1, n2, . . . , nk} which is impossible. Thus G has no finite subcover
and (R, τ`) is not compact.
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2. The subspace A = {x : x < 0} is not compact.
Let G = {(−∞, −1n ) : n ∈ N} be an open cover of A. Suppose that
G has a finite subcover say (−∞, −1n1

), (−∞, −1n2
), . . . (−∞, −1nk ), then A ⊆

(−∞, −1n1
)∪(−∞, −1n2

)∪· · ·∪(−∞, −1nk ) = (−∞, −1n0
) where n0 = max{n1, n2, . . . , nk}

which is impossible, thus G has no finite subcover and hence (0, 1) is not
compact.

3. The subspace A = {x : x ≤ 0} is compact.
Let G = {Gα : α ∈ 4} ⊆ τ be any open cover of A since 0 ∈ (−∞, 0],∃α ∈
4 : 0 ∈ Gα = (−∞, r), where r > 0 it is clear that A ⊆ (−∞, r), G has a
finite subcover and hence A is compact.

Remark 37. Suppose that A and B are compact subspace of a space X, then
A ∩ B is not compact. Consider the space (R, τ`) and A = (−∞, 0) ∪ {2},
B = (−∞, 0)∩{3} in the same way as in example 75 (3), A and B are compact
where A ∩B = (−∞, 0) is not compact be example 75 (2).

Obvious’ is the most dangerous word in mathematics. E. T. Bell
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